Model-Implied Instrumental Variable-Generalized Method of Moments (MIIV-GMM) Estimators for Latent Variable Models

被引:31
|
作者
Bollen, Kenneth A. [1 ]
Kolenikov, Stanislav [2 ]
Bauldry, Shawn [3 ]
机构
[1] Univ N Carolina, Dept Sociol, Chapel Hill, NC 27599 USA
[2] ABT SRBI, New York, NY USA
[3] Univ Alabama Birmingham, Dept Sociol, Birmingham, AL USA
关键词
structural equation models; latent variables; generalized method of moments; instrumental variables; factor analysis; LEAST-SQUARES; 2SLS; TEST STATISTICS; REGRESSION; ERROR;
D O I
10.1007/s11336-013-9335-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The common maximum likelihood (ML) estimator for structural equation models (SEMs) has optimal asymptotic properties under ideal conditions (e.g., correct structure, no excess kurtosis, etc.) that are rarely met in practice. This paper proposes model-implied instrumental variable - generalized method of moments (MIIV-GMM) estimators for latent variable SEMs that are more robust than ML to violations of both the model structure and distributional assumptions. Under less demanding assumptions, the MIIV-GMM estimators are consistent, asymptotically unbiased, asymptotically normal, and have an asymptotic covariance matrix. They are "distribution-free," robust to heteroscedasticity, and have overidentification goodness-of-fit J-tests with asymptotic chi-square distributions. In addition, MIIV-GMM estimators are "scalable" in that they can estimate and test the full model or any subset of equations, and hence allow better pinpointing of those parts of the model that fit and do not fit the data. An empirical example illustrates MIIV-GMM estimators. Two simulation studies explore their finite sample properties and find that they perform well across a range of sample sizes.
引用
收藏
页码:20 / 50
页数:31
相关论文
共 17 条
  • [1] Model-Implied Instrumental Variable—Generalized Method of Moments (MIIV-GMM) Estimators for Latent Variable Models
    Kenneth A. Bollen
    Stanislav Kolenikov
    Shawn Bauldry
    [J]. Psychometrika, 2014, 79 : 20 - 50
  • [3] A Model Implied Instrumental Variable Approach to Exploratory Factor Analysis (MIIV-EFA)
    Bollen, Kenneth A.
    Gates, Kathleen M.
    Luo, Lan
    [J]. PSYCHOMETRIKA, 2024, 89 (02) : 687 - 716
  • [4] Exact computation of GMM estimators for instrumental variable quantile regression models
    Chen, Le-Yu
    Lee, Sokbae
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2018, 33 (04) : 553 - 567
  • [5] A unified model-implied instrumental variable approach for structural equation modeling with mixed variables
    Jin, Shaobo
    Yang-Wallentin, Fan
    Bollen, Kenneth A.
    [J]. PSYCHOMETRIKA, 2021, 86 (02) : 564 - 594
  • [6] A unified model-implied instrumental variable approach for structural equation modeling with mixed variables
    Shaobo Jin
    Fan Yang-Wallentin
    Kenneth A. Bollen
    [J]. Psychometrika, 2021, 86 : 564 - 594
  • [7] Deep Generalized Method of Moments for Instrumental Variable Analysis
    Bennett, Andrew
    Kallus, Nathan
    Schnabel, Tobias
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [8] A new method of moments for latent variable models
    Matteo Ruffini
    Marta Casanellas
    Ricard Gavaldà
    [J]. Machine Learning, 2018, 107 : 1431 - 1455
  • [9] A new method of moments for latent variable models
    Ruffini, Matted
    Casanellas, Marta
    Gayada, Ricard
    [J]. MACHINE LEARNING, 2018, 107 (8-10) : 1431 - 1455
  • [10] Latent Variable GIMME Using Model Implied Instrumental Variables (MIIVs)
    Gates, Kathleen M.
    Fisher, Zachary F.
    Bollen, Kenneth A.
    [J]. PSYCHOLOGICAL METHODS, 2020, 25 (02) : 227 - 242