On Inconsistency of the Overidentification Test for the Model-implied Instrumental Variable Approach

被引:1
|
作者
Jin, Shaobo [1 ]
机构
[1] Uppsala Univ, Uppsala, Sweden
关键词
Factor analysis; inconsistent test; Sargan test; structural equation model; STRUCTURAL EQUATION MODELS; CONFIRMATORY FACTOR-ANALYSIS; LEAST-SQUARES; 2SLS; SPECIFICATION; ESTIMATOR; RESTRICTIONS; DWLS; PIV; ULS; ML;
D O I
10.1080/10705511.2022.2122978
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the context of structural equation modeling, the model-implied instrumental variable (MIIV) approach has been shown to be more robust against model misspecification than the systemwide approaches (e.g., maximum likelihood and least squares). Besides the goodness-of-fit tests that test the fit of the entire hypothesized covariance structure, the overidentification tests for MIIV can be used to test model specification on an equation-by-equation basis. However, it is known in the econometrics literature that the overidentification tests are inconsistent against general misspecification, if it is used to test a zero correlation between the instrumental variables and the error terms. In this paper, we show that such inconsistency can also occur for the MIIV approach. Numerical examples where the powers of the tests converge to the size are presented. Theoretical results are proved to support the numerical findings. Implications on when the overidentification tests are consistent are also presented.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
  • [1] A unified model-implied instrumental variable approach for structural equation modeling with mixed variables
    Shaobo Jin
    Fan Yang-Wallentin
    Kenneth A. Bollen
    Psychometrika, 2021, 86 : 564 - 594
  • [2] A unified model-implied instrumental variable approach for structural equation modeling with mixed variables
    Jin, Shaobo
    Yang-Wallentin, Fan
    Bollen, Kenneth A.
    PSYCHOMETRIKA, 2021, 86 (02) : 564 - 594
  • [3] Automating the selection of model-implied instrumental variables
    Bollen, KA
    Bauer, DJ
    SOCIOLOGICAL METHODS & RESEARCH, 2004, 32 (04) : 425 - 452
  • [4] Model-Implied Instrumental Variable—Generalized Method of Moments (MIIV-GMM) Estimators for Latent Variable Models
    Kenneth A. Bollen
    Stanislav Kolenikov
    Shawn Bauldry
    Psychometrika, 2014, 79 : 20 - 50
  • [5] Model-Implied Instrumental Variable-Generalized Method of Moments (MIIV-GMM) Estimators for Latent Variable Models
    Bollen, Kenneth A.
    Kolenikov, Stanislav
    Bauldry, Shawn
    PSYCHOMETRIKA, 2014, 79 (01) : 20 - 50
  • [6] miivfind: A command for identifying model-implied instrumental variables for structural equation models in Stata
    Bauldry, Shawn
    STATA JOURNAL, 2014, 14 (01): : 60 - 75
  • [7] A Model Implied Instrumental Variable Approach to Exploratory Factor Analysis (MIIV-EFA)
    Bollen, Kenneth A.
    Gates, Kathleen M.
    Luo, Lan
    PSYCHOMETRIKA, 2024, 89 (02) : 687 - 716
  • [8] Appropriate modeling of endogeneity in cross-lagged models: Efficacy of auxiliary and model-implied instrumental variables
    Fang, Junyan
    Wen, Zhonglin
    Hau, Kit-Tai
    Huang, Xitong
    BEHAVIOR RESEARCH METHODS, 2025, 57 (04)
  • [9] Latent Variable GIMME Using Model Implied Instrumental Variables (MIIVs)
    Gates, Kathleen M.
    Fisher, Zachary F.
    Bollen, Kenneth A.
    PSYCHOLOGICAL METHODS, 2020, 25 (02) : 227 - 242
  • [10] ON STATISTICAL PROPERTIES OF A TEST FOR MODEL STRUCTURE SELECTION USING THE EXTENDED INSTRUMENTAL VARIABLE APPROACH
    DUONG, HN
    LANDAU, JD
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (01) : 211 - 215