A Model Implied Instrumental Variable Approach to Exploratory Factor Analysis (MIIV-EFA)

被引:0
|
作者
Bollen, Kenneth A. [1 ,2 ]
Gates, Kathleen M. [1 ]
Luo, Lan [1 ]
机构
[1] Univ N Carolina, Chapel Hill, NC USA
[2] Univ N Carolina, Dept Psychol & Neurosci, Dept Sociol, Thurstone Psychometr Lab, 235 E Cameron Ave, Chapel Hill, NC 27599 USA
关键词
exploratory factor analysis; latent variables; model implied instrumental variables; miiv; number of factors; exploratory analysis; CONFIRMATORY FACTOR-ANALYSIS; STRUCTURAL EQUATION MODELS; LEAST-SQUARES; 2SLS; NONITERATIVE ESTIMATION; ESTIMATOR; SPECIFICATION; ALGORITHMS; SELECTION; NUMBER;
D O I
10.1007/s11336-024-09949-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Spearman (Am J Psychol 15(1):201-293, 1904. https://doi.org/10.2307/1412107) marks the birth of factor analysis. Many articles and books have extended his landmark paper in permitting multiple factors and determining the number of factors, developing ideas about simple structure and factor rotation, and distinguishing between confirmatory and exploratory factor analysis (CFA and EFA). We propose a new model implied instrumental variable (MIIV) approach to EFA that allows intercepts for the measurement equations, correlated common factors, correlated errors, standard errors of factor loadings and measurement intercepts, overidentification tests of equations, and a procedure for determining the number of factors. We also permit simpler structures by removing nonsignificant loadings. Simulations of factor analysis models with and without cross-loadings demonstrate the impressive performance of the MIIV-EFA procedure in recovering the correct number of factors and in recovering the primary and secondary loadings. For example, in nearly all replications MIIV-EFA finds the correct number of factors when N is 100 or more. Even the primary and secondary loadings of the most complex models were recovered when the sample sizes were at least 500. We discuss limitations and future research areas. Two appendices describe alternative MIIV-EFA algorithms and the sensitivity of the algorithm to cross-loadings.
引用
收藏
页码:687 / 716
页数:30
相关论文
共 50 条
  • [1] Model-Implied Instrumental Variable—Generalized Method of Moments (MIIV-GMM) Estimators for Latent Variable Models
    Kenneth A. Bollen
    Stanislav Kolenikov
    Shawn Bauldry
    [J]. Psychometrika, 2014, 79 : 20 - 50
  • [2] Model-Implied Instrumental Variable-Generalized Method of Moments (MIIV-GMM) Estimators for Latent Variable Models
    Bollen, Kenneth A.
    Kolenikov, Stanislav
    Bauldry, Shawn
    [J]. PSYCHOMETRIKA, 2014, 79 (01) : 20 - 50
  • [4] Exploratory Factor Analysis (EFA) Programs in R
    Luo, Lan
    Arizmendi, Cara
    Gates, Kathleen M.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2019, 26 (05) : 819 - 826
  • [5] A unified model-implied instrumental variable approach for structural equation modeling with mixed variables
    Jin, Shaobo
    Yang-Wallentin, Fan
    Bollen, Kenneth A.
    [J]. PSYCHOMETRIKA, 2021, 86 (02) : 564 - 594
  • [6] A unified model-implied instrumental variable approach for structural equation modeling with mixed variables
    Shaobo Jin
    Fan Yang-Wallentin
    Kenneth A. Bollen
    [J]. Psychometrika, 2021, 86 : 564 - 594
  • [7] Latent Variable GIMME Using Model Implied Instrumental Variables (MIIVs)
    Gates, Kathleen M.
    Fisher, Zachary F.
    Bollen, Kenneth A.
    [J]. PSYCHOLOGICAL METHODS, 2020, 25 (02) : 227 - 242
  • [8] An Introduction to Model Implied Instrumental Variables Using Two Stage Least Squares (MIIV-2SLS) in Structural Equation Models (SEMs)
    Bollen, Kenneth A.
    Fisher, Zachary F.
    Giordano, Michael L.
    Lilly, Adam G.
    Luo, Lan
    Ye, Ai
    [J]. PSYCHOLOGICAL METHODS, 2022, 27 (05) : 752 - 772
  • [9] Validation of subscales of the Severe Asthma Questionnaire (SAQ) using exploratory factor analysis (EFA)
    Joseph W. Lanario
    Michael E. Hyland
    Andrew Menzies-Gow
    Adel H. Mansur
    James W. Dodd
    Stephen J. Fowler
    Rupert C. Jones
    Matthew Masoli
    [J]. Health and Quality of Life Outcomes, 18
  • [10] Building an EDM process model by an instrumental variable approach
    Zhou, Ming
    Chen, Zhigang
    Niu, Jufen
    [J]. PROCEEDINGS OF THE SEVENTEENTH CIRP CONFERENCE ON ELECTRO PHYSICAL AND CHEMICAL MACHINING (ISEM), 2013, 6 : 456 - 462