A Hybrid CNN-LSTM Model for IIoT Edge Privacy-Aware Intrusion Detection

被引:4
|
作者
de Elias, Erik Miguel [1 ]
Carriel, Vinicius Sanches [1 ]
de Oliveira, Guilherme Werneck [1 ]
dos Santos, Aldri Luiz [2 ]
Nogueira, Michele [2 ]
Hirata Junior, Roberto [1 ]
Batista, Daniel Macedo [1 ]
机构
[1] Univ Sao Paulo, Dept Comp Sci, Sao Paulo, Brazil
[2] Fed Univ Minas Gerais UFMG, Dept Comp Sci, Belo Horizonte, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
IoT; IIoT; Neural Networks; Deep Learning; Machine Learning; Intrusion Detection;
D O I
10.1109/LATINCOM56090.2022.10000468
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Security is a critical issue in the context of IoT and, more recently, of Industrial IoT (IIoT) environments. To mitigate security threats, Intrusion Detection Systems have been proposed. Still, most of them can achieve high accuracy only by having access to the application layer of the flows, which is problematic in terms of privacy. This paper presents a neural network model based on a hybrid CNN-LSTM architecture to detect several attacks in the network traffic at the Edge of IIoT using only features from the transport and network layers. Besides improving privacy, the proposal achieves 97.85% average accuracy when classifying the traffic as benign or malicious and 97.14% average accuracy when classifying 15 specific attacks in a dataset containing IIoT traffic. Moreover, all the code produced is available as free software, facilitating new studies and the reproduction of the experiments.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] SafetyMed: A Novel IoMT Intrusion Detection System Using CNN-LSTM Hybridization
    Faruqui, Nuruzzaman
    Abu Yousuf, Mohammad
    Whaiduzzaman, Md
    Azad, A. K. M.
    Alyami, Salem A.
    Lio, Pietro
    Kabir, Muhammad Ashad
    Moni, Mohammad Ali
    ELECTRONICS, 2023, 12 (17)
  • [22] A Hybrid CNN-LSTM model for Video Deepfake Detection by Leveraging Optical Flow Features
    Saikia, Pallabi
    Dholaria, Dhwani
    Yadav, Priyanka
    Patel, Vaidehi
    Roy, Mohendra
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [23] A hybrid CNN-LSTM model for pre-miRNA classification
    Abdulkadir Tasdelen
    Baha Sen
    Scientific Reports, 11
  • [24] A hybrid CNN-LSTM model for pre-miRNA classification
    Tasdelen, Abdulkadir
    Sen, Baha
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [25] Solar Power Forecasting Using CNN-LSTM Hybrid Model
    Lim, Su-Chang
    Huh, Jun-Ho
    Hong, Seok-Hoon
    Park, Chul-Young
    Kim, Jong-Chan
    ENERGIES, 2022, 15 (21)
  • [26] Prediction of Passenger Flow Based on CNN-LSTM Hybrid Model
    Wang Yu
    Wang Zhifei
    Wang Hongye
    Zhnag Junfeng
    Feng Ruilong
    2019 12TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2019), 2019, : 132 - 135
  • [27] A CNN-LSTM hybrid network for automatic seizure detection in EEG signals
    Shalini Shanmugam
    Selvathi Dharmar
    Neural Computing and Applications, 2023, 35 : 20605 - 20617
  • [28] Hybrid Feature Optimization for Voice Spoof Detection Using CNN-LSTM
    Neelima, Medikonda
    Prabha, I. Santi
    TRAITEMENT DU SIGNAL, 2024, 41 (02) : 717 - 727
  • [29] A Novel Quench Detection Method Based on CNN-LSTM Model
    Zhou, Xiao
    Shi, Jing
    Gong, Kang
    Zhu, Changdong
    Hua, Jing
    Xu, Jun
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2021, 31 (05)
  • [30] Chinese Grammatical Error Detection Using a CNN-LSTM Model
    Lee, Lung-Hao
    Lin, Bo-Lin
    Yu, Liang-Chih
    Tseng, Yuen-Hsien
    25TH INTERNATIONAL CONFERENCE ON COMPUTERS IN EDUCATION (ICCE 2017): TECHNOLOGY AND INNOVATION: COMPUTER-BASED EDUCATIONAL SYSTEMS FOR THE 21ST CENTURY, 2017, : 919 - 921