A hybrid CNN-LSTM model for pre-miRNA classification

被引:32
|
作者
Tasdelen, Abdulkadir [1 ]
Sen, Baha [2 ]
机构
[1] Karabuk Univ, TOBB Tech Sci Vocat Sch, Karabuk, Turkey
[2] Ankara Yildirim Beyazit Univ, Dept Comp Engn, Ankara, Turkey
关键词
POSTTRANSCRIPTIONAL REGULATION; MICRORNA BIOGENESIS; DIAGNOSIS; RECOGNITION; MECHANISMS; PRECURSORS; SELECTION; NETWORKS; DISEASE; GENES;
D O I
10.1038/s41598-021-93656-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
miRNAs (or microRNAs) are small, endogenous, and noncoding RNAs construct of about 22 nucleotides. Cumulative evidence from biological experiments shows that miRNAs play a fundamental and important role in various biological processes. Therefore, the classification of miRNA is a critical problem in computational biology. Due to the short length of mature miRNAs, many researchers are working on precursor miRNAs (pre-miRNAs) with longer sequences and more structural features. Pre-miRNAs can be divided into two groups as mirtrons and canonical miRNAs in terms of biogenesis differences. Compared to mirtrons, canonical miRNAs are more conserved and easier to be identified. Many existing pre-miRNA classification methods rely on manual feature extraction. Moreover, these methods focus on either sequential structure or spatial structure of pre-miRNAs. To overcome the limitations of previous models, we propose a nucleotide-level hybrid deep learning method based on a CNN and LSTM network together. The prediction resulted in 0.943 (%95 CI +/- 0.014) accuracy, 0.935 (%95 CI +/- 0.016) sensitivity, 0.948 (%95 CI +/- 0.029) specificity, 0.925 (%95 CI +/- 0.016) F1 Score and 0.880 (%95 CI +/- 0.028) Matthews Correlation Coefficient. When compared to the closest results, our proposed method revealed the best results for Acc., F1 Score, MCC. These were 2.51%, 1.00%, and 2.43% higher than the closest ones, respectively. The mean of sensitivity ranked first like Linear Discriminant Analysis. The results indicate that the hybrid CNN and LSTM networks can be employed to achieve better performance for pre-miRNA classification. In future work, we study on investigation of new classification models that deliver better performance in terms of all the evaluation criteria.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A hybrid CNN-LSTM model for pre-miRNA classification
    Abdulkadir Tasdelen
    Baha Sen
    Scientific Reports, 11
  • [2] Text classification based on hybrid CNN-LSTM hybrid model
    She, Xiangyang
    Zhang, Di
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 185 - 189
  • [3] Classification of health care products using hybrid CNN-LSTM model
    Reddy, B. Ramakantha
    Kumar, R. Lokesh
    SOFT COMPUTING, 2023, 27 (13) : 9199 - 9216
  • [4] A hybrid CNN-LSTM model for high resolution melting curve classification
    Ozkok, Fatma Ozge
    Celik, Mete
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [5] A Hybrid CNN-LSTM Deep Learning Model for Classification of the Parkinson Disease
    El-Sayed, Rania Salah
    IAENG International Journal of Applied Mathematics, 2023, 53 (04)
  • [6] A hybrid CNN-LSTM model for typhoon formation forecasting
    Chen, Rui
    Wang, Xiang
    Zhang, Weimin
    Zhu, Xiaoyu
    Li, Aiping
    Yang, Chao
    GEOINFORMATICA, 2019, 23 (03) : 375 - 396
  • [7] A hybrid CNN-LSTM model for typhoon formation forecasting
    Rui Chen
    Xiang Wang
    Weimin Zhang
    Xiaoyu Zhu
    Aiping Li
    Chao Yang
    GeoInformatica, 2019, 23 : 375 - 396
  • [8] CNN-LSTM: A Novel Hybrid Deep Neural Network Model for Brain Tumor Classification
    Dhaniya, R. D.
    Umamaheswari, K. M.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (01): : 1129 - 1143
  • [9] Solar Power Forecasting Using CNN-LSTM Hybrid Model
    Lim, Su-Chang
    Huh, Jun-Ho
    Hong, Seok-Hoon
    Park, Chul-Young
    Kim, Jong-Chan
    ENERGIES, 2022, 15 (21)
  • [10] Prediction of Passenger Flow Based on CNN-LSTM Hybrid Model
    Wang Yu
    Wang Zhifei
    Wang Hongye
    Zhnag Junfeng
    Feng Ruilong
    2019 12TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2019), 2019, : 132 - 135