Asymptotic behavior of Timoshenko beam with dissipative boundary feedback

被引:23
|
作者
Yan, QY
Hou, SH
Feng, DX [1 ]
机构
[1] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Timoshenko beam; boundary feedback; C-0-semigroups; asymptotic stability; exponential stability;
D O I
10.1016/S0022-247X(02)00036-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the stabilization problem of Timoshenko beam in the presence of linear dissipative boundary feedback controls. Using C-0-semigroups theory we establish the existence and the uniqueness of solution of the proposed closed loop system. In order to consider the asymptotic behavior of the closed loop system, we first discuss the existence of nonzero solution of a closely related boundary value problem, Then we derive various necessary and sufficient conditions for the system to be asymptotically stable. Finally, we prove the equivalence between the exponential stability and the asymptoic stability for the closed loop system. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:556 / 577
页数:22
相关论文
共 50 条
  • [41] In-domain damping assignment of a Timoshenko-beam using state feedback boundary control
    Redaud, Jeanne
    Auriol, Jean
    Le Gorrec, Yann
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 5405 - 5410
  • [42] Feedback stabilization of a Timoshenko beam with an end mass
    Shi, DH
    Hou, SH
    Feng, DX
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1998, 69 (02) : 285 - 300
  • [43] NONLINEAR FEEDBACK-CONTROL OF TIMOSHENKO BEAM
    FENG, DX
    ZHANG, WT
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES, 1995, 38 (08): : 918 - 927
  • [44] One-parameter spectral Galerkin methods for Timoshenko beam system with delay boundary feedback
    Tang, Changyang
    Zhang, Chengjian
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125
  • [45] Asymptotic behavior for Timoshenko systems with fractional damping
    Oquendo, Higidio Portillo
    da Luz, Cleverson Roberto
    [J]. ASYMPTOTIC ANALYSIS, 2020, 118 (1-2) : 123 - 142
  • [46] Exact controllability of a Timoshenko beam with dynamical boundary
    Zhang, Chun-Guo
    Hu, Hong-Xiang
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2007, 47 (03): : 643 - 655
  • [47] BOUNDARY-CONDITIONS FOR THE TIMOSHENKO VIBRATING BEAM
    SHULZHENKO, NG
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1984, (08): : 57 - 59
  • [48] A Timoshenko beam with tip body and boundary damping
    Zietsman, L
    van Rensburg, NFJ
    van der Merwe, AJ
    [J]. WAVE MOTION, 2004, 39 (03) : 199 - 211
  • [49] Nonlinear boundary stabilization for Timoshenko beam system
    Feitosa, A. J. R.
    Oliveira, M. L.
    Miranda, M. Milla
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 428 (01) : 194 - 216
  • [50] Asymptotic decay rate of non-classical strain gradient Timoshenko micro-cantilevers by boundary feedback
    Vatankhah, Ramin
    Najafi, Ali
    Salarieh, Hassan
    Alasty, Aria
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2014, 28 (02) : 627 - 635