Asymptotic behavior for Timoshenko systems with fractional damping

被引:4
|
作者
Oquendo, Higidio Portillo [1 ]
da Luz, Cleverson Roberto [2 ]
机构
[1] Univ Fed Parana, Dept Math, Curitiba, Parana, Brazil
[2] Univ Fed Santa Catarina, Dept Math, Florianopolis, SC, Brazil
关键词
Timoshenko beam; frictional damping; Kelvin-Voigt damping; polynomial decay; exponential decay; DECAY-RATES; STABILITY; STABILIZATION; FOURIER;
D O I
10.3233/ASY-191552
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with the asymptotic behavior of the solutions of a Timoshenko beam with a fractional damping. The damping acts only in one of the equations and depends on a parameter theta is an element of [0, 1]. Timoshenko systems with frictional or Kelvin-Voigt dampings are particular cases of this model. We prove that, for regular initial data, the semigroup of this system decays polynomially with rates that depend on theta and some relations between the structural parameters of the system. We also show that the decay rates obtained are optimal and the only possibility to obtain exponential decay is when theta = 0 and the wave propagation speeds of the equations coincide.
引用
收藏
页码:123 / 142
页数:20
相关论文
共 50 条
  • [1] Asymptotic behavior of thermoelastic systems of laminated Timoshenko beams with Kelvin-Voigt damping
    Quispe Mendez, Teofanes
    Cabanillas, Victor R.
    Feng, Baowei
    [J]. APPLICABLE ANALYSIS, 2024,
  • [2] Asymptotic approximations for systems incorporating fractional derivative damping
    Liebst, BS
    Torvik, PJ
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1996, 118 (03): : 572 - 579
  • [3] ASYMPTOTIC STABILIZATION FOR BRESSE TRANSMISSION SYSTEMS WITH FRACTIONAL DAMPING
    Hao, Jianghao
    Wang, Dingkun
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (87) : 1 - 38
  • [4] Global existence and asymptotic behavior for a Timoshenko system with internal damping and logarithmic source terms
    Sebastião Martins Siqueira Cordeiro
    Ducival Carvalho Pereira
    Carlos Alessandro da Costa Baldez
    Carlos Alberto Raposo da Cunha
    [J]. Arabian Journal of Mathematics, 2023, 12 : 105 - 118
  • [5] Global existence and asymptotic behavior for a Timoshenko system with internal damping and logarithmic source terms
    Cordeiro, Sebastiao Martins Siqueira
    Pereira, Ducival Carvalho
    Baldez, Carlos Alessandro da Costa
    da Cunha, Carlos Alberto Raposo
    [J]. ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (01) : 105 - 118
  • [6] Timoshenko systems with indefinite damping
    Munoz Rivera, Jaime E.
    Racke, Reinhard
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) : 1068 - 1083
  • [7] On Timoshenko-type systems with type III thermoelasticity: Asymptotic behavior
    Santos, M. L.
    Almeida Junior, D. S.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (01) : 650 - 671
  • [8] Asymptotic behavior of a logarithmic-viscoelastic wave equation with internal fractional damping
    Aounallah, Radhouane
    Choucha, Abdelbaki
    Boulaaras, Salah
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2024,
  • [9] The Asymptotic Behavior of Solutions for a Class of Nonlinear Fractional Difference Equations with Damping Term
    Bai, Zhihong
    Xu, Run
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [10] Polynomial stability of a transmission problem involving Timoshenko systems with fractional Kelvin-Voigt damping
    Guesmia, Aissa A.
    Mohamad Ali, Zeinab
    Wehbe, Ali
    Youssef, Wael
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (06) : 7140 - 7179