Asymptotic behavior of a logarithmic-viscoelastic wave equation with internal fractional damping

被引:0
|
作者
Aounallah, Radhouane [1 ]
Choucha, Abdelbaki [2 ,3 ]
Boulaaras, Salah [4 ]
机构
[1] Echahid Cheikh Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessi 12000, Algeria
[2] Amar Teleji Laghouat Univ, Fac Sci, Dept Mat Sci, Laghouat, Algeria
[3] Ghardaia Univ, Lab Math & Appl Sci, Bounoura, Algeria
[4] Qassim Univ, Coll Sci, Dept Math, Buraydah 51452, Saudi Arabia
关键词
Fractional damping; General decay; Relaxation function; Logarithmic source term; Partial differential equations; Nonlinear equations; GENERAL DECAY; BLOW-UP; ENERGY; EXISTENCE;
D O I
10.1007/s10998-024-00611-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a viscoelastic wave equation with internal fractional damping and a logarithmic source term. By utilizing the energy method combined with the Faedo-Galerkin procedure, we establish the existence of a global solution. Furthermore, we demonstrate that, under the general assumption on the relaxation function g, the global solutions exhibit a general decay behavior. This is achieved by constructing a suitable Lyapunov functional.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Asymptotic behavior of a viscoelastic wave equation with a delay in internal fractional feedback
    Aounallah, Radhouane
    Choucha, Adbelbaki
    Boulaaras, Salah
    Zarai, Abderrahmane
    [J]. ARCHIVES OF CONTROL SCIENCES, 2024, 34 (02): : 379 - 413
  • [2] GLOBAL EXISTENCE, UNIQUENESS AND ASYMPTOTIC BEHAVIOR FOR A NONLINEAR VISCOELASTIC PROBLEM WITH INTERNAL DAMPING AND LOGARITHMIC SOURCE TERM
    Ferreira, Jorge
    Shahrouzi, Mohammad
    Aitzhanov, Serik E.
    Cordeiro, Sebastiao
    Rocha, Daniel, V
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2023, 15 (04): : 395 - 429
  • [3] Fractional Nonlinearity for the Wave Equation with Friction and Viscoelastic Damping
    Djaouti, Abdelhamid Mohammed
    Latif, Muhammad Amer
    [J]. AXIOMS, 2022, 11 (10)
  • [4] THE LIFESPAN OF SOLUTIONS FOR A VISCOELASTIC WAVE EQUATION WITH A STRONG DAMPING AND LOGARITHMIC NONLINEARITY
    Liao, Menglan
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (03): : 781 - 792
  • [5] Asymptotic Behavior for a Class of Logarithmic Wave Equations with Linear Damping
    Qingying Hu
    Hongwei Zhang
    Gongwei Liu
    [J]. Applied Mathematics & Optimization, 2019, 79 : 131 - 144
  • [6] Asymptotic Behavior for a Class of Logarithmic Wave Equations with Linear Damping
    Hu, Qingying
    Zhang, Hongwei
    Liu, Gongwei
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 79 (01): : 131 - 144
  • [7] Asymptotic profiles for a wave equation with parameter-dependent logarithmic damping
    Coimbra Charao, Ruy
    D'Abbicco, Marcello
    Ikehata, Ryo
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14003 - 14024
  • [8] Existence and asymptotic behavior for a logarithmic viscoelastic plate equation with distributed delay
    Piskin, Erhan
    Ferreira, Jorge
    Yuksekkaya, Hazal
    Shahrouzi, Mohammad
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 763 - 788
  • [9] Global existence and asymptotic behaviour for a viscoelastic plate equation with nonlinear damping and logarithmic nonlinearity
    Kakumani, Bhargav Kumar
    Yadav, Suman Prabha
    [J]. ASYMPTOTIC ANALYSIS, 2023, 135 (3-4) : 399 - 419
  • [10] ASYMPTOTIC BEHAVIOR FOR A VISCOELASTIC WAVE EQUATION WITH A DELAY TERM
    Wu, Shun-Tang
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (03): : 765 - 784