Asymptotic behavior for Timoshenko systems with fractional damping

被引:4
|
作者
Oquendo, Higidio Portillo [1 ]
da Luz, Cleverson Roberto [2 ]
机构
[1] Univ Fed Parana, Dept Math, Curitiba, Parana, Brazil
[2] Univ Fed Santa Catarina, Dept Math, Florianopolis, SC, Brazil
关键词
Timoshenko beam; frictional damping; Kelvin-Voigt damping; polynomial decay; exponential decay; DECAY-RATES; STABILITY; STABILIZATION; FOURIER;
D O I
10.3233/ASY-191552
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with the asymptotic behavior of the solutions of a Timoshenko beam with a fractional damping. The damping acts only in one of the equations and depends on a parameter theta is an element of [0, 1]. Timoshenko systems with frictional or Kelvin-Voigt dampings are particular cases of this model. We prove that, for regular initial data, the semigroup of this system decays polynomially with rates that depend on theta and some relations between the structural parameters of the system. We also show that the decay rates obtained are optimal and the only possibility to obtain exponential decay is when theta = 0 and the wave propagation speeds of the equations coincide.
引用
收藏
页码:123 / 142
页数:20
相关论文
共 50 条
  • [21] Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type
    Abbes Benaissa
    Sohbi Benazzouz
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [22] On asymptotic behavior of fractional Cauchy transform
    Igor Chyzhykov
    Galyna Beregova
    [J]. Analysis and Mathematical Physics, 2019, 9 : 809 - 820
  • [23] Asymptotic Behavior of Oscillatory Fractional Processes
    Marty, Renaud
    Solna, Knut
    [J]. SEMINAIRE DE PROBABILITES XLIV, 2012, 2046 : 247 - 269
  • [24] Asymptotic Behavior for Petrovsky Equation with Localized Damping
    Xiaosen Han
    Mingxin Wang
    [J]. Acta Applicandae Mathematicae, 2010, 110 : 1057 - 1076
  • [25] Asymptotic Behavior of the Fractional Heston Model
    Guennoun, Hamza
    Jacquier, Antoine
    Roome, Patrick
    Shi, Fangwei
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2018, 9 (03): : 1017 - 1045
  • [26] Asymptotic Behavior for Petrovsky Equation with Localized Damping
    Han, Xiaosen
    Wang, Mingxin
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1057 - 1076
  • [27] Asymptotic behavior of tidal damping in alluvial estuaries
    Cai, Huayang
    Savenije, Hubert H. G.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (11) : 6107 - 6122
  • [28] On asymptotic behavior of fractional Cauchy transform
    Chyzhykov, Igor
    Beregova, Galyna
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (02) : 809 - 820
  • [29] INDIRECT STABILIZATION OF TIMOSHENKO SYSTEMS WITH ONE LOCAL MEMORY DAMPING
    Jin, Kun-Peng
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2021, 34 (7-8) : 401 - 424
  • [30] Asymptotic behavior of fractional-order nonlinear systems with two different derivatives
    Chen, Liping
    Xue, Min
    Lopes, Antonio
    Wu, Ranchao
    Chen, YangQuan
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2023, 140 (01)