On short time existence of Lagrangian mean curvature flow

被引:8
|
作者
Begley, Tom [1 ]
Moore, Kim [1 ]
机构
[1] Ctr Math Sci, CCA, Wilberforce Rd, Cambridge CB3 0WA, England
基金
英国工程与自然科学研究理事会;
关键词
SINGULARITIES; SUBMANIFOLDS; UNIQUENESS;
D O I
10.1007/s00208-016-1420-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a short time existence problem motivated by a conjecture of Joyce (Conjectures on Bridgeland stability for Fukaya categories of Calabi-Yau manifolds, special Lagrangians, and Lagrangian mean curvature flow. arXiv:1401.4949,2014). Specifically we prove that given any compact Lagrangian L subset of C(n)with a finite number of singularities, each asymptotic to a pair of non-area-minimising, transversally intersecting Lagrangian planes, there is a smooth Lagrangian mean curvature flow existing for some positive time, that attains L as t SE arrow 0 as varifolds, and smoothly locally away from the singularities.
引用
收藏
页码:1473 / 1515
页数:43
相关论文
共 50 条
  • [31] Global Existence of a Mean Curvature Flow in a Cone
    Ai, Neng
    Lou, Bendong
    Song, Jiashu
    Yang, Pei
    Zhang, Xin
    JOURNAL OF MATHEMATICAL STUDY, 2024, 57 (03) : 278 - 293
  • [32] SINGULARITIES OF LAGRANGIAN MEAN CURVATURE FLOW: MONOTONE CASE
    Neves, Andre
    MATHEMATICAL RESEARCH LETTERS, 2010, 17 (01) : 109 - 126
  • [33] Cohomogeneity-one Lagrangian mean curvature flow
    Madnick, Jesse
    Wood, Albert
    MATHEMATISCHE ANNALEN, 2025, 391 (03) : 4325 - 4388
  • [34] MEAN CURVATURE FLOW OF ASYMPTOTICALLY CONICAL LAGRANGIAN SUBMANIFOLDS
    Su, Wei-Bo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (02) : 1211 - 1242
  • [35] Existence and Uniqueness for a Crystalline Mean Curvature Flow
    Chambolle, Antonin
    Morini, Massimiliano
    Ponsiglione, Marcello
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (06) : 1084 - 1114
  • [36] Lagrangian mean curvature flow for entire Lipschitz graphs
    Albert Chau
    Jingyi Chen
    Weiyong He
    Calculus of Variations and Partial Differential Equations, 2012, 44 : 199 - 220
  • [37] Lagrangian Homothetic Solitons for the Inverse Mean Curvature Flow
    Castro, Ildefonso
    Lerma, Ana M.
    RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 1109 - 1125
  • [38] Lagrangian Homothetic Solitons for the Inverse Mean Curvature Flow
    Ildefonso Castro
    Ana M. Lerma
    Results in Mathematics, 2017, 71 : 1109 - 1125
  • [39] The mean curvature at the first singular time of the mean curvature flow
    Le, Nam Q.
    Sesum, Natasa
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (06): : 1441 - 1459
  • [40] Existence of Entire Solutions to the Lagrangian Mean Curvature Equations in Supercritical Phase
    Bao, Jiguang
    Liu, Zixiao
    Wang, Cong
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (05)