Cohomogeneity-one Lagrangian mean curvature flow

被引:0
|
作者
Madnick, Jesse [1 ]
Wood, Albert [2 ]
机构
[1] Seton Hall Univ, S Orange, NJ USA
[2] Kings Coll London, London, England
关键词
SELF-SIMILAR SOLUTIONS; TRANSLATING SOLITONS; SINGULARITIES; SUBMANIFOLDS; CONSTRUCTION; SURFACES;
D O I
10.1007/s00208-024-03005-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study mean curvature flow of Lagrangians in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>n$$\end{document} that are cohomogeneity-one with respect to a compact Lie group G <= SU(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \le \textrm{SU}(n)$$\end{document} acting linearly on Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>n$$\end{document}. Each such Lagrangian necessarily lies in a level set mu-1(xi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu <^>{-1}(\xi )$$\end{document} of the standard moment map mu:Cn -> g & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu :\mathbb {C}<^>n \rightarrow \mathfrak {g}<^>*$$\end{document}, and mean curvature flow preserves this containment. We classify all cohomogeneity-one self-similarly shrinking, expanding and translating solutions to the flow, as well as cohomogeneity-one smooth special Lagrangians lying in mu-1(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu <^>{-1}(0)$$\end{document}. Restricting to the case of almost-calibrated flows in the zero level set mu-1(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu <^>{-1}(0)$$\end{document}, we classify finite-time singularities, explicitly describing the Type I and Type II blowup models. Finally, given any cohomogeneity-one special Lagrangian in mu-1(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu <^>{-1}(0)$$\end{document}, we show it occurs as the Type II blowup model of a Lagrangian MCF singularity. Throughout, we give explicit examples of suitable group actions, including a complete list in the case of G simple. This yields infinitely many new examples of shrinking and expanding solitons for Lagrangian MCF, as well as infinitely many new singularity models.
引用
收藏
页码:4325 / 4388
页数:64
相关论文
共 50 条
  • [1] Cohomogeneity-one Lagrangian mean curvature flowCohomogeneity-one Lagrangian mean curvature flowJ. Madnick, A. Wood
    Jesse Madnick
    Albert Wood
    Mathematische Annalen, 2025, 391 (3) : 4325 - 4388
  • [2] Classification of cohomogeneity-one strings
    Ishihara, H
    Kozaki, H
    PHYSICAL REVIEW D, 2005, 72 (06):
  • [3] Diagonalizing cohomogeneity-one Einstein metrics
    Dammerman, Brandon
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (09) : 1271 - 1284
  • [4] The equivariant cohomology ring of a cohomogeneity-one action
    Carlson, Jeffrey D.
    Goertsches, Oliver
    He, Chen
    Mare, Augustin-Liviu
    GEOMETRIAE DEDICATA, 2019, 203 (01) : 205 - 223
  • [5] The equivariant cohomology ring of a cohomogeneity-one action
    Jeffrey D. Carlson
    Oliver Goertsches
    Chen He
    Augustin-Liviu Mare
    Geometriae Dedicata, 2019, 203 : 205 - 223
  • [6] Cohomogeneity-one G2-structures
    Cleyton, R
    Swann, A
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 44 (2-3) : 202 - 220
  • [7] Cohomogeneity-one quasi-Einstein metrics
    Buttsworth, Timothy
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (01) : 201 - 217
  • [8] Cohomogeneity-one G2-Laplacian flow on the 7-torus
    Huang, Hongnian
    Wang, Yuanqi
    Yao, Chengjian
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 : 349 - 368
  • [9] Symmetries of the one-dimensional hyperbolic Lagrangian mean curvature flow
    Gao, Ben
    Yang, Liu
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (03):
  • [10] Hyperbolic mean curvature flow for Lagrangian graphs: One dimensional case
    Duan, Shuang-Shuang
    He, Chun-Lei
    Huang, Shou-Jun
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 157