Beyond mind-reading: multi-voxel pattern analysis of fMRI data

被引:1606
|
作者
Norman, Kenneth A.
Polyn, Sean M.
Detre, Greg J.
Haxby, James V.
机构
[1] Princeton Univ, Dept Psychol, Princeton, NJ 08540 USA
[2] Univ Penn, Dept Psychol, Philadelphia, PA 19104 USA
关键词
D O I
10.1016/j.tics.2006.07.005
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
A key challenge for cognitive neuroscience is determining how mental representations map onto patterns of neural activity. Recently, researchers have started to address this question by applying sophisticated pattern-classification algorithms to distributed (multi-voxel) patterns of functional MRI data, with the goal of decoding the information that is represented in the subject's brain at a particular point in time. This multi-voxel pattern analysis (MVPA) approach has led to several impressive feats of mind reading. More importantly, MVPA methods constitute a useful new tool for advancing our understanding of neural information processing. We review how researchers are using MVPA methods to characterize neural coding and information processing in domains ranging from visual perception to memory search.
引用
收藏
页码:424 / 430
页数:7
相关论文
共 50 条
  • [41] Investigating the neural basis of basic human movement perception using multi-voxel pattern analysis
    Ma, Fangyuan
    Xu, Junhai
    Li, Xianglin
    Wang, Peiyuan
    Wang, Bin
    Liu, Baolin
    EXPERIMENTAL BRAIN RESEARCH, 2018, 236 (03) : 907 - 918
  • [42] Investigating the neural basis of basic human movement perception using multi-voxel pattern analysis
    Fangyuan Ma
    Junhai Xu
    Xianglin Li
    Peiyuan Wang
    Bin Wang
    Baolin Liu
    Experimental Brain Research, 2018, 236 : 907 - 918
  • [43] Temporal embedding and spatiotemporal feature selection boost multi-voxel pattern analysis decoding accuracy
    Choupan, Jeiran
    Douglas, Pamela K.
    Gal, Yaniv
    Cohen, Mark S.
    Reutens, David C.
    Yang, Zhengyi
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 345
  • [44] Multi-voxel pattern analysis of amygdala functional connectivity at rest predicts variability in posttraumatic stress severity
    Fitzgerald, Jacklynn M.
    Belleau, Emily L.
    Miskovich, Tara A.
    Pedersen, Walker S.
    Larson, Christine L.
    BRAIN AND BEHAVIOR, 2020, 10 (08):
  • [45] Cross-modal representations in early visual and auditory cortices revealed by multi-voxel pattern analysis
    Jin Gu
    Baolin Liu
    Xianglin Li
    Peiyuan Wang
    Bin Wang
    Brain Imaging and Behavior, 2020, 14 : 1908 - 1920
  • [46] Cross-modal representations in early visual and auditory cortices revealed by multi-voxel pattern analysis
    Gu, Jin
    Liu, Baolin
    Li, Xianglin
    Wang, Peiyuan
    Wang, Bin
    BRAIN IMAGING AND BEHAVIOR, 2020, 14 (05) : 1908 - 1920
  • [47] Representation of semantic typicality in brain activation in healthy adults and individuals with aphasia: A multi-voxel pattern analysis
    Li, Ran
    Perrachione, Tyler K.
    Tourville, Jason A.
    Kiran, Swathi
    NEUROPSYCHOLOGIA, 2021, 158
  • [48] Multi-voxel pattern analysis of selective representation of visual working memory in ventral temporal and occipital regions
    Han, Xufeng
    Berg, Alexander C.
    Oh, Hwamee
    Samaras, Dimitris
    Leung, Hoi-Chung
    NEUROIMAGE, 2013, 73 : 8 - 15
  • [49] Pattern of cerebellar grey matter loss associated with ataxia severity in spinocerebellar ataxias type 3: a multi-voxel pattern analysis
    Jianping Hu
    Xinyuan Chen
    Mengcheng Li
    Hao-Ling Xu
    Ziqiang Huang
    Naping Chen
    Yuqing Tu
    Qunlin Chen
    Shirui Gan
    Dairong Cao
    Brain Imaging and Behavior, 2022, 16 : 379 - 388
  • [50] Using Informational Connectivity to Measure the Synchronous Emergence of fMRI Multi-voxel Information Across Time
    Coutanche, Marc N.
    Thompson-Schill, Sharon L.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (89):