Temporal embedding and spatiotemporal feature selection boost multi-voxel pattern analysis decoding accuracy

被引:2
|
作者
Choupan, Jeiran [1 ,2 ,3 ,4 ]
Douglas, Pamela K. [6 ,7 ,8 ]
Gal, Yaniv [5 ]
Cohen, Mark S. [9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ]
Reutens, David C. [1 ]
Yang, Zhengyi [1 ,5 ,17 ]
机构
[1] Univ Queensland, Ctr Adv Imaging, Brisbane, Qld, Australia
[2] Univ Queensland, Queensland Brain Inst, Brisbane, Qld, Australia
[3] Univ Southern Calif, USC Dornsife Coll Letters Arts & Sci, Dept Psychol, Los Angeles, CA 90007 USA
[4] Univ Southern Calif, Keck Sch Med, USC Stevens Neuroimaging & Informat Inst, Lab Neuro Imaging, Los Angeles, CA 90007 USA
[5] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld, Australia
[6] Univ Calif Los Angeles, Ctr Cognit Neurosci, Los Angeles, CA USA
[7] UCF, Modeling & Simulat Dept, Orlando, FL USA
[8] UCF, Comp Sci Dept, Orlando, FL USA
[9] Univ Calif Los Angeles, Inst Neuropsychiat, 760 Westwood Plaza, Los Angeles, CA 90024 USA
[10] Univ Calif Los Angeles, Dept Psychiat & Behav Sci, Los Angeles, CA USA
[11] Univ Calif Los Angeles, Dept Neurol, Los Angeles, CA 90024 USA
[12] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles, CA 90024 USA
[13] Univ Calif Los Angeles, Dept Biomed Phys, Los Angeles, CA USA
[14] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA USA
[15] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA USA
[16] Univ Calif Los Angeles, Sch Med, Calif Nanosyst Inst, Los Angeles, CA USA
[17] Chinese Acad Sci, Brainnetome Ctr, Inst Automat, Beijing, Peoples R China
关键词
fMRI; Multi-variate pattern analysis; Spatiotemporal feature selection; Multiband EPI; Random forest; Support vector machine; SUPPORT VECTOR MACHINES; FMRI; REPRESENTATIONS; CLASSIFICATION; RESPONSES; STIMULUS; DISCRIMINATION; EXPECTATION; INFORMATION; REGRESSION;
D O I
10.1016/j.jneumeth.2020.108836
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: In fMRI decoding, temporal embedding of spatial features of the brain allows the incorporation of brain activity dynamics into the multivariate pattern classification process, and provides enriched information about stimulus-specific response patterns and potentially improved prediction accuracy. New method: This study investigates the possibility of enhancing the classification performance by exploring temporal embedding, to identify the optimum combination of spatiotemporal features based on their classification performance. We investigated the importance of spatiotemporal feature selection using a slow event-related design adapted from the classic Haxby study (Haxby et al., 2001). Data were collected using a multiband fMRI sequence with temporal resolution of 0.568 s. Comparison with existing methods: A wide range of spatiotemporal observations were created as various combinations of spatiotemporal features. Using both random forest, and support vector machine, classifiers prediction accuracies for these combinations were then compared with the single spatial multivariate pattern approach that uses only a single temporal observation. Results: Our findings showed that, on average, spatiotemporal feature selection improved prediction accuracy. Moreover, the random forest algorithm outperformed the support vector machine and benefitted from temporal information to a greater extent. Conclusions: As expected, the most influential temporal durations were found to be around the peak of the hemodynamic response function, a few seconds after the stimuli onset until - 4 s after the peak of the hemodynamic response function. The superiority of spatiotemporal feature selection over single time-point spatial approaches invites future work to design optimal approaches that incorporate spatiotemporal dependencies into feature selection for decoding.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A critique of multi-voxel pattern analysis
    Anderson, Michael L.
    Oates, Tim
    [J]. COGNITION IN FLUX, 2010, : 1511 - 1516
  • [2] fMRI Brain Decoding of Facial hxpressions Based on Multi-voxel Pattern Analysis
    Rafiei, Farshad
    Hossein-Zadeh, Gholam-Ali
    [J]. 2015 2ND INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED ENGINEERING AND INNOVATION (KBEI), 2015, : 247 - 250
  • [3] MULTI-VOXEL PATTERN ANALYSIS OF VALENCE IN DEPRESSION
    Habes, Isabelle
    Krall, Sarah
    Johnston, Stephen
    Yuen, Kenneth
    Healy, David
    Goebel, Rainer
    Sorger, Bettina
    Linden, David
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 2013, : 218 - 218
  • [4] Multi-voxel pattern analysis of noun and verb differences in ventral temporal cortex
    Boylan, Christine
    Trueswell, John C.
    Thompson-Schill, Sharon L.
    [J]. BRAIN AND LANGUAGE, 2014, 137 : 40 - 49
  • [5] Multi-voxel pattern analysis in human hippocampal subfields
    Bonnici, Heidi M.
    Chadwick, Martin J.
    Kumaran, Dharshan
    Hassabis, Demis
    Weiskopf, Nikolaus
    Maguire, Eleanor A.
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2012, 6
  • [6] Reliability of dissimilarity measures for multi-voxel pattern analysis
    Walther, Alexander
    Nili, Hamed
    Ejaz, Naveed
    Alink, Arjen
    Kriegeskorte, Nikolaus
    Diedrichsen, Jorn
    [J]. NEUROIMAGE, 2016, 137 : 188 - 200
  • [7] Voxel Selection Framework in Multi-Voxel Pattern Analysis of fMRI Data for Prediction of Neural Response to Visual Stimuli
    Chou, Chun-An
    Kampa, Kittipat
    Mehta, Sonya H.
    Tungaraza, Rosalia F.
    Chaovalitwongse, W. Art
    Grabowski, Thomas J.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (04) : 925 - 934
  • [8] High-resolution multi-voxel pattern analysis of category selectivity in the medial temporal lobes
    Diana, Rachel A.
    Yonelinas, Andrew P.
    Ranganath, Charan
    [J]. HIPPOCAMPUS, 2008, 18 (06) : 536 - 541
  • [9] A Multi-voxel Pattern Analysis of Neural Representation of Vibrotactile Location
    Kim, Junsuk
    Chung, Yoon Gi
    Chung, Soon-Cheol
    Park, Jang-Yeon
    Buelthoff, Heinrich
    Kim, Sung-Phil
    [J]. 2013 13TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2013), 2013, : 1637 - 1640
  • [10] Assessing hippocampal functional reserve in temporal lobe epilepsy: A multi-voxel pattern analysis of fMRI data
    Bonnici, Heidi M.
    Sidhu, Meneka
    Chadwick, Martin J.
    Duncan, John S.
    Maguire, Eleanor A.
    [J]. EPILEPSY RESEARCH, 2013, 105 (1-2) : 140 - 149