Microarray missing data imputation based on a set theoretic framework and biological constraints

被引:0
|
作者
Gan, Xiangchao [1 ]
Liew, Alan Wee-Chung [2 ]
Yan, Hong [1 ,3 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, 83 Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
[3] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gene expressions measured using microarrays usually suffer from the missing value problem. Existing missing value imputation algorithms have some limitations. For example, some algorithms have good performance only when strong local correlation exists in data while some provide the best estimate when data is dominated by a global structure. In addition, these algorithms do not take into account many biological constraints in the imputation procedure. In this paper, we propose a set theoretic framework for missing data imputation. We design our algorithm by taking into consideration the biological characteristic of the data and exploit the local correlation and the global correlation structure adaptively. Experiments show that our algorithm can achieve a significant reduction of error compared with existing methods.
引用
收藏
页码:842 / +
页数:2
相关论文
共 50 条
  • [21] Imputation of Missing Values in the Fundamental Data: Using MICE Framework
    Balasubramaniam Meghanadh
    Lagesh Aravalath
    Bhupesh Joshi
    Raghunathan Sathiamoorthy
    Manish Kumar
    [J]. Journal of Quantitative Economics, 2019, 17 : 459 - 475
  • [22] Shrinkage regression-based methods for microarray missing value imputation
    Wang, Hsiuying
    Chiu, Chia-Chun
    Wu, Yi-Ching
    Wu, Wei-Sheng
    [J]. BMC SYSTEMS BIOLOGY, 2013, 7
  • [23] An efficient ensemble method for missing value imputation in microarray gene expression data
    Xinshan Zhu
    Jiayu Wang
    Biao Sun
    Chao Ren
    Ting Yang
    Jie Ding
    [J]. BMC Bioinformatics, 22
  • [24] Missing value imputation improves clustering and interpretation of gene expression microarray data
    Tuikkala, Johannes
    Elo, Laura L.
    Nevalainen, Olli S.
    Aittokallio, Tero
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [25] Sequential local least squares imputation estimating missing value of microarray data
    Zhang, Xiaobai
    Song, Xiaofeng
    Wang, Huinan
    Zhan, Huanping
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2008, 38 (10) : 1112 - 1120
  • [26] An Improvement of Missing Value Imputation in DNA Microarray Data Using Cluster-based LLS Method
    Keerin, Phimmarin
    Kurutach, Werasak
    Boongoen, Tossapon
    [J]. 2013 13TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT): COMMUNICATION AND INFORMATION TECHNOLOGY FOR NEW LIFE STYLE BEYOND THE CLOUD, 2013, : 559 - 564
  • [27] An Optimization Algorithm for Missing Value Imputation in Microarray Based on Integrated Information
    Liu, Feng
    Zhang, Yiding
    Liu, Zeming
    Gao, Meng
    [J]. FUZZY SYSTEMS AND DATA MINING V (FSDM 2019), 2019, 320 : 55 - 64
  • [28] Imputation of Missing Values in the Fundamental Data: Using MICE Framework
    Meghanadh, Balasubramaniam
    Aravalath, Lagesh
    Joshi, Bhupesh
    Sathiamoorthy, Raghunathan
    Kumar, Manish
    [J]. JOURNAL OF QUANTITATIVE ECONOMICS, 2019, 17 (03) : 459 - 475
  • [29] An efficient ensemble method for missing value imputation in microarray gene expression data
    Zhu, Xinshan
    Wang, Jiayu
    Sun, Biao
    Ren, Chao
    Yang, Ting
    Ding, Jie
    [J]. BMC BIOINFORMATICS, 2021, 22 (01)
  • [30] Missing value imputation for microarray data: a comprehensive comparison study and a web tool
    Chiu, Chia-Chun
    Chan, Shih-Yao
    Wang, Chung-Ching
    Wu, Wei-Sheng
    [J]. BMC SYSTEMS BIOLOGY, 2013, 7