Microarray missing data imputation based on a set theoretic framework and biological constraints

被引:0
|
作者
Gan, Xiangchao [1 ]
Liew, Alan Wee-Chung [2 ]
Yan, Hong [1 ,3 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, 83 Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
[3] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gene expressions measured using microarrays usually suffer from the missing value problem. Existing missing value imputation algorithms have some limitations. For example, some algorithms have good performance only when strong local correlation exists in data while some provide the best estimate when data is dominated by a global structure. In addition, these algorithms do not take into account many biological constraints in the imputation procedure. In this paper, we propose a set theoretic framework for missing data imputation. We design our algorithm by taking into consideration the biological characteristic of the data and exploit the local correlation and the global correlation structure adaptively. Experiments show that our algorithm can achieve a significant reduction of error compared with existing methods.
引用
收藏
页码:842 / +
页数:2
相关论文
共 50 条
  • [1] Microarray missing data imputation based on a set theoretic framework and biological knowledge
    Gan, XC
    Liew, AWC
    Yan, H
    [J]. NUCLEIC ACIDS RESEARCH, 2006, 34 (05) : 1608 - 1619
  • [2] A cluster-directed framework for neighbour based imputation of missing value in microarray data
    Keerin, Phimmarin
    Kurutach, Werasak
    Boongoen, Tossapon
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 15 (02) : 165 - 193
  • [3] MICROARRAY MISSING DATA IMPUTATION USING REGRESSION
    Bayrak, Tuncay
    Ogul, Hasan
    [J]. 2017 13TH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (BIOMED), 2017, : 68 - 73
  • [4] Robust imputation method for missing values in microarray data
    Yoon, Dankyu
    Lee, Eun-Kyung
    Park, Taesung
    [J]. BMC BIOINFORMATICS, 2007, 8 (Suppl 2)
  • [5] Robust imputation method for missing values in microarray data
    Dankyu Yoon
    Eun-Kyung Lee
    Taesung Park
    [J]. BMC Bioinformatics, 8
  • [6] Cluster-based KNN Missing Value Imputation for DNA Microarray Data
    Keerin, Phimmarin
    Kurutach, Werasak
    Boongoen, Tossapon
    [J]. PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 445 - 450
  • [7] Imputation of missing values in DNA microarray gene expression data
    Kim, H
    Golub, GH
    Park, H
    [J]. 2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 572 - 573
  • [8] KNN-DTW Based Missing Value Imputation for Microarray Time Series Data
    Hsu, Hui-Huang
    Yang, Andy C.
    Lu, Ming-Da
    [J]. JOURNAL OF COMPUTERS, 2011, 6 (03) : 418 - 425
  • [9] A General Spatiotemporal Imputation Framework for Missing Sensor Data
    Tharzeen, Aahila
    Munikoti, Sai
    Prakash, Punit
    Kim, Jungkwun
    Natarajan, Balasubramaniam
    [J]. 2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 55 - 58
  • [10] The theoretic framework of local weighted approximation for microarray missing value estimation
    Liu, Chao-Chun
    Dai, Dao-Qing
    Yan, Hong
    [J]. PATTERN RECOGNITION, 2010, 43 (08) : 2993 - 3002