An upper bound of Heilbronn number for eight points in triangles

被引:2
|
作者
Chen, Liangyu [1 ]
Zeng, Zhenbing [1 ]
Zhou, Wei [1 ]
机构
[1] E China Normal Univ, Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
关键词
Heilbronn number; Combinatorial optimization; Upper bound; Parallel computation;
D O I
10.1007/s10878-012-9585-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we will present some results related to the upper bound of Heilbronn number for eight points in triangles and the approximate shape of the optimal configurations.
引用
收藏
页码:854 / 874
页数:21
相关论文
共 50 条
  • [11] THE SEMICONTINUITY OF SPECTRUM AND THE UPPER BOUND OF THE NUMBER OF SINGULAR POINTS OF THE PROJECTIVE HYPERSURFACE
    VARCHENKO, AN
    DOKLADY AKADEMII NAUK SSSR, 1983, 270 (06): : 1294 - 1297
  • [12] The expected size of Heilbronn's triangles
    Jiang, T
    Li, M
    Vitányi, P
    FOURTEENTH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 1999, : 105 - 113
  • [13] An Improved Bound on the Number of Unit Area Triangles
    Apfelbaum, Roel
    Sharir, Micha
    PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 135 - 140
  • [14] An Improved Bound on the Number of Unit Area Triangles
    Apfelbaum, Roel
    Sharir, Micha
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (04) : 753 - 761
  • [15] An Improved Bound on the Number of Unit Area Triangles
    Roel Apfelbaum
    Micha Sharir
    Discrete & Computational Geometry, 2010, 44 : 753 - 761
  • [16] AN UPPER BOUND FOR THE NUMBER OF S-INTEGRAL POINTS ON CURVES OF GENUS ZERO
    Poulakis, Dimitrios
    COLLOQUIUM MATHEMATICUM, 2022, 168 (01) : 141 - 147
  • [17] Upper bound on the number of Weyl points born from a nongeneric degeneracy point
    Pinter, Gergo
    Frank, Gyoergy
    Varjas, Daniel
    Palyi, Andras
    PHYSICAL REVIEW B, 2024, 110 (24)
  • [18] The lower bound of the number of non-overlapping triangles
    Changqing Xu
    Ren Ding
    Journal of Applied Mathematics and Computing, 2003, 11 (1-2) : 283 - 290
  • [19] AN UPPER BOUND ON THE NUMBER OF RATIONAL POINTS OF ARBITRARY PROJECTIVE VARIETIES OVER FINITE FIELDS
    Couvreur, Alain
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) : 3671 - 3685
  • [20] ON UPPER BOUND FOR MAXIMUM NUMBER OF POINTS NO 4 ON 1 PLANE IN PG(R,2)
    SEIDEN, E
    ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (04): : 1841 - &