The expected size of Heilbronn's triangles

被引:4
|
作者
Jiang, T [1 ]
Li, M [1 ]
Vitányi, P [1 ]
机构
[1] McMaster Univ, Dept Comp & Software, Hamilton, ON L8S 4K1, Canada
关键词
D O I
10.1109/CCC.1999.766269
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Heilbronn's triangle problem asks for the least a such that n points lying in the unit disc necessarily contain a triangle of area at most Delta. Heilbronn initially conjectured Delta = O(1/n(2)). As a result of concerted mathematical effort it is currently known that there are positive constants c and C such that c log n/n(2) less than or equal to Delta less than or equal to C/n(8/7-epsilon) for every constant epsilon > 0. We resolve Heilbronn's problem in the expected case: If we uniformly at random put n points in the unit disc then (i) the area of the smallest triangle has expectation theta(1/n(3)); and (ii) the smallest triangle has area theta(1/n(3)) with probability almost one. Our proof uses the incompressibility method based on Kolmogorov complexity.
引用
收藏
页码:105 / 113
页数:9
相关论文
共 50 条
  • [1] An upper bound of Heilbronn number for eight points in triangles
    Chen, Liangyu
    Zeng, Zhenbing
    Zhou, Wei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (04) : 854 - 874
  • [2] An upper bound of Heilbronn number for eight points in triangles
    Liangyu Chen
    Zhenbing Zeng
    Wei Zhou
    Journal of Combinatorial Optimization, 2014, 28 : 854 - 874
  • [3] The average-case area of Heilbronn-type triangles
    Jiang, T
    Li, M
    Vitányi, P
    RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (02) : 206 - 219
  • [4] Determining the Heilbronn Configuration of Seven Points in Triangles via Symbolic Computation
    Zeng, Zhenbing
    Chen, Liangyu
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2019), 2019, 11661 : 458 - 477
  • [5] On Analogues of Heilbronn’s Theorem
    D. A. Dolgov
    Mathematical Notes, 2022, 111 : 841 - 854
  • [6] On Analogues of Heilbronn's Theorem
    Dolgov, D. A.
    MATHEMATICAL NOTES, 2022, 111 (5-6) : 841 - 854
  • [7] ON HEILBRONN'S EXPONENTIAL SUM
    Shkredov, I. D.
    QUARTERLY JOURNAL OF MATHEMATICS, 2013, 64 (04): : 1221 - 1230
  • [8] SIZE DISTRIBUTIONS IN RANDOM TRIANGLES
    Daley, D. J.
    Ebert, Sven
    Swift, R. J.
    JOURNAL OF APPLIED PROBABILITY, 2014, 51 (0A) : 283 - 295
  • [9] An algorithm for Heilbronn's problem
    Bertram-Kretzberg, C
    Hofmeister, T
    Lefmann, H
    SIAM JOURNAL ON COMPUTING, 2000, 30 (02) : 383 - 390