3D reconstruction based on compressed-sensing (CS)-based framework by using a dental panoramic detector

被引:0
|
作者
Je, U. K. [1 ]
Cho, H. M. [1 ]
Hong, D. K. [1 ]
Cho, H. S. [1 ]
Park, Y. O. [1 ]
Park, C. K. [1 ]
Kim, K. S. [1 ]
Lim, H. W. [1 ]
Kim, G. A. [1 ]
Park, S. Y. [1 ]
Woo, T. H. [1 ]
Cho, S. I. [1 ]
机构
[1] Yonsei Univ, Dept Radiat Convergence Engn, iTOMO Res Grp, Wonju 220710, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Dental panoramic detector; Compressed-sensing; Spiral scan; Zigzag scan; IDENTIFICATION;
D O I
10.1016/j.ejmp.2015.09.005
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In this work, we propose a practical method that can combine the two functionalities of dental panoramic and cone-beam CT (CBCT) features in one by using a single panoramic detector. We implemented a CS-based reconstruction algorithm for the proposed method and performed a systematic simulation to demonstrate its viability for 3D dental X-ray imaging. We successfully reconstructed volumetric images of considerably high accuracy by using a panoramic detector having an active area of 198.4 mm x 6.4 mm and evaluated the reconstruction quality as a function of the pitch (p) and the angle step (Delta theta). Our simulation results indicate that the CS-based reconstruction almost completely recovered the phantom structures, as in CBCT, for p <= 2 0. and theta <= 6 degrees, indicating that it seems very promising for accurate image reconstruction even for large-pitch and few-view data. We expect the proposed method to be applicable to developing a cost-effective, volumetric dental X-ray imaging system. (C) 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:213 / 217
页数:5
相关论文
共 50 条
  • [21] Simulation and experimental studies of three-dimensional (3D) image reconstruction from insufficient sampling data based on compressed-sensing theory for potential applications to dental cone-beam CT
    Je, U. K.
    Lee, M. S.
    Cho, H. S.
    Hong, D. K.
    Park, Y. O.
    Park, C. K.
    Cho, H. M.
    Choi, S. I.
    Woo, T. H.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 784 : 550 - 556
  • [22] COMPRESSED SENSING RECONSTRUCTION OF 3D ULTRASOUND DATA USING DICTIONARY LEARNING
    Lorintiu, O.
    Liebgott, H.
    Alessandrini, M.
    Bernard, O.
    Friboulet, D.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1317 - 1321
  • [23] Compressed-sensing (CS)-based micro-DTS reconstruction for applications of fast, low-dose x-ray imaging
    J. E. Oh
    H. S. Cho
    D. K. Hong
    M. S. Lee
    Y. O. Park
    U. K. Je
    H. J. Kim
    S. H. Lee
    S. I. Choi
    Y. S. Koo
    H. M. Cho
    [J]. Journal of the Korean Physical Society, 2012, 61 : 1120 - 1124
  • [24] Compressed-sensing (CS)-based micro-DTS reconstruction for applications of fast, low-dose x-ray imaging
    Oh, J. E.
    Cho, H. S.
    Hong, D. K.
    Lee, M. S.
    Park, Y. O.
    Je, U. K.
    Kim, H. J.
    Lee, S. H.
    Choi, S. I.
    Koo, Y. S.
    Cho, H. M.
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 61 (07) : 1120 - 1124
  • [25] Compressed-Sensing Reconstruction Based on Block Sparse Bayesian Learning in Bearing-Condition Monitoring
    Sun, Jiedi
    Yu, Yang
    Wen, Jiangtao
    [J]. SENSORS, 2017, 17 (06):
  • [26] GPU-accelerated compressed-sensing (CS) image reconstruction in chest digital tomosynthesis (CDT) using CUDA programming
    Choi, Sunghoon
    Leer, Haenghwa
    Lee, Donghoon
    Choi, Seungyeon
    Shin, Jungwook
    Jang, Woojin
    Seo, Chang-Woo
    Kim, Hee-Joung
    [J]. MEDICAL IMAGING 2017: PHYSICS OF MEDICAL IMAGING, 2017, 10132
  • [27] A Reconstruction Method of Compressed Sensing 3D Medical Models Based on the Weighted 0-norm
    Li, Hong-An
    Li, Zhan-Li
    Du, Zhuo-Ming
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2017, 7 (02) : 416 - 420
  • [28] Method for Generating Panoramic Textures for 3D Face Reconstruction Based on the 3D Morphable Model
    Hao, Shujia
    Wen, Mingyun
    Cho, Kyungeun
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [29] Survey on compressed sensing reconstruction method for 3D data
    Zhang, Jingbo
    Xie, Liping
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (02):
  • [30] 3D scene reconstruction based on the panoramic cameras system of the lunar rover
    Jiao, Chunlin
    Gao, Mantun
    Shi, Yikai
    [J]. MIPPR 2007: PATTERN RECOGNITION AND COMPUTER VISION, 2007, 6788