Nonsingular mixed graph;
Laplacian matrix;
First eigenvalue;
Pendant vertices;
ALGEBRAIC CONNECTIVITY;
SIGNLESS LAPLACIAN;
LEAST EIGENVALUE;
FIXED GIRTH;
D O I:
10.1016/j.laa.2014.04.006
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let G be a mixed graph and L(G) be the Laplacian matrix of the mixed graph G. The first eigenvalue of G is referred to the least nonzero eigenvalue of L(G). Let MG(n, k) be the set of nonsingular mixed graphs with n vertices and k pendant vertices, where n >= 4. In this paper, up to a signature matrix, we determine the unique graph with the minimal first eigenvalue among all graphs hi MG(n, k). Thus we obtain a lower bound for the first eigenvalue of a mixed graph in terms of the number of pendant vertices. (C) 2014 Elsevier Inc. All rights reserved.
机构:
S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
Xing, Rundan
Zhou, Bo
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China