FACE HALLUCINATION USING OLPP AND KERNEL RIDGE REGRESSION

被引:0
|
作者
Kumar, B. G. Vijay [1 ]
Aravind, R. [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Madras 600036, Tamil Nadu, India
关键词
Face Hallucination; Orthogonal Locality Preserving Projection; Kernel Ridge Regression;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generally face images may be visualized as points drawn on a low-dimensional manifold embedded in high-dimensional ambient space. Many dimensionality reduction techniques have been used to learn this manifold. Orthogonal Locality Preserving Projection(OLPP) is one among them which aims to discover the local structure of the manifold and produces orthogonal basis functions. In this paper, we present a two-step patch based algorithm for face superresolution. In first step a MAP based framework is used to obtain high resolution patch from its low resolution counterpart where the face subspace is learnt using OLPP To enhance the quality of the image further, we propose a method which uses Kernel Ridge Regression to learn the relation between low and high resolution residual patches. Experimental results show that our approach can reconstruct high quality face images.
引用
收藏
页码:353 / 356
页数:4
相关论文
共 50 条
  • [1] Face recognition using kernel ridge regression
    An, Senjian
    Liu, Wanquan
    Venkatesh, Svetha
    [J]. 2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 1033 - +
  • [2] Face Hallucination via Coarse-to-Fine Recursive Kernel Regression Structure
    Shi, Jingang
    Zhao, Guoying
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (09) : 2223 - 2236
  • [3] Face Hallucination and Recognition Using Kernel Canonical Correlation Analysis
    Zhang, Zhao
    Yuan, Yun-Hao
    Li, Yun
    Li, Bin
    Qiang, Ji-Peng
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2017), PT VI, 2017, 10639 : 633 - 641
  • [4] MEDICAL IMAGE DENOISING USING KERNEL RIDGE REGRESSION
    Dinh Hoan Trinh
    Luong, Marie
    Rocchisani, Jean-Marie
    Canh Duong Pham
    Dibos, Francoise
    [J]. 2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1597 - 1600
  • [5] Automatic Text Summarization using Kernel Ridge Regression
    Onita, Daniela
    Cucu, Ciprian
    [J]. 2023 25TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC 2023, 2023, : 202 - 209
  • [6] FASTER KERNEL RIDGE REGRESSION USING SKETCHING AND PRECONDITIONING
    Avron, Haim
    Clarkson, Kenneth L.
    Woodruff, David P.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2017, 38 (04) : 1116 - 1138
  • [7] Kernel ridge regression using truncated newton method
    Maalouf, Maher
    Homouz, Dirar
    [J]. KNOWLEDGE-BASED SYSTEMS, 2014, 71 : 339 - 344
  • [8] Sparse kernel ridge regression using backward deletion
    Wang, Ling
    Bo, Liefeng
    Jiao, Licheng
    [J]. PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 365 - 374
  • [9] An identity for kernel ridge regression
    Zhdanov, Fedor
    Kalnishkan, Yuri
    [J]. THEORETICAL COMPUTER SCIENCE, 2013, 473 : 157 - 178
  • [10] Heteroscedastic kernel ridge regression
    Cawley, GC
    Talbot, NLC
    Foxall, RJ
    Dorling, SR
    Mandic, DP
    [J]. NEUROCOMPUTING, 2004, 57 : 105 - 124