Heteroscedastic kernel ridge regression

被引:31
|
作者
Cawley, GC [1 ]
Talbot, NLC
Foxall, RJ
Dorling, SR
Mandic, DP
机构
[1] Univ E Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
[2] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
[3] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2BT, England
关键词
kernel methods; non-linear regression; heteroscedasticity;
D O I
10.1016/j.neucom.2004.01.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we extend a form of kernel ridge regression (KRR) for data characterised by a heteroscedastic (i.e. input dependent variance) Gaussian noise process, introduced in Foxall et al. (in: Proceedings of the European Symposium on Artificial Neural Networks (ESANN-2002), Bruges, Belgium, April 2002, pp. 19-24). It is shown that the proposed heteroscedastic kernel ridge regression model can give a more accurate estimate of the conditional mean of the target distribution than conventional KRR and also provides an indication of the spread of the target distribution (i.e. predictive error bars). The leave-one-out cross-validation estimate of the conditional mean is used in fitting the model of the conditional variance in order to overcome the inherent bias in maximum likelihood estimates of the variance. The benefits of the proposed model are demonstrated on synthetic and real-world benchmark data sets and for the task of predicting episodes of poor air quality in an urban environment. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:105 / 124
页数:20
相关论文
共 50 条
  • [1] Correlation Based Ridge Parameters in Ridge Regression with Heteroscedastic Errors and Outliers
    A. V. Dorugade
    [J]. Journal of Statistical Theory and Applications, 2015, 14 (4): : 413 - 424
  • [2] Correlation Based Ridge Parameters in Ridge Regression with Heteroscedastic Errors and Outliers
    Dorugade, A. V.
    [J]. JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2015, 14 (04): : 413 - 424
  • [3] An identity for kernel ridge regression
    Zhdanov, Fedor
    Kalnishkan, Yuri
    [J]. THEORETICAL COMPUTER SCIENCE, 2013, 473 : 157 - 178
  • [4] An Identity for Kernel Ridge Regression
    Zhdanov, Fedor
    Kalnishkan, Yuri
    [J]. ALGORITHMIC LEARNING THEORY, ALT 2010, 2010, 6331 : 405 - 419
  • [5] Kernel Ridge Regression Classification
    He, Jinrong
    Ding, Lixin
    Jiang, Lei
    Ma, Ling
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2263 - 2267
  • [6] Conformalized Kernel Ridge Regression
    Burnaev, Evgeny
    Nazarov, Ivan
    [J]. 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 45 - 52
  • [7] Doubly regularized kernel regression with heteroscedastic censored data
    Shim, J
    Hwang, C
    [J]. ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 521 - 527
  • [8] Mathematical interpretations of kernel ridge regression
    Tanaka, Akira
    Imai, Hideyuki
    Kudo, Mineichi
    Miyakoshi, Masaaki
    [J]. COMPUTING ANTICIPATORY SYSTEMS, 2006, 839 : 347 - +
  • [9] Distributed kernel ridge regression with communications
    Lin, Shao-Bo
    Wang, Di
    Zhou, Ding-Xuan
    [J]. Journal of Machine Learning Research, 2020, 21
  • [10] Fuzzy kernel ridge regression for classification
    Choi, YoungSik
    Noh, JiSung
    [J]. ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 588 - +