Tensor Trains Approximation Estimates in the Chebyshev Norm

被引:5
|
作者
Osinsky, A. I. [1 ]
机构
[1] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
基金
俄罗斯科学基金会;
关键词
multidimensional arrays; nonlinear approximations; maximum volume principle;
D O I
10.1134/S096554251902012X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new elementwise bound on the cross approximation error used for approximating multi-index arrays (tensors) in the format of a tensor train is obtained. The new bound is the first known error bound that differs from the best bound by a factor that depends only on the rank of the approximation and on the dimensionality of the tensor , and the dependence on the dimensionality at a fixed rank has only the order rather than const(d). Thus, this bound justifies the use of the cross method even for high dimensional tensors.
引用
收藏
页码:201 / 206
页数:6
相关论文
共 50 条
  • [1] Tensor Trains Approximation Estimates in the Chebyshev Norm
    A. I. Osinsky
    Computational Mathematics and Mathematical Physics, 2019, 59 : 201 - 206
  • [2] Norm estimates for Chebyshev polynomials, II
    Schiefermayr, Klaus
    Zinchenko, Maxim
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 512 (01)
  • [3] Norm estimates for Chebyshev polynomials, I
    Schiefermayr, Klaus
    Zinchenko, Maxim
    JOURNAL OF APPROXIMATION THEORY, 2021, 265
  • [4] SIMULTANEOUS CHEBYSHEV APPROXIMATION IN SUM NORM
    LING, WH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 48 (01) : 185 - 188
  • [5] SOTT: GREEDY APPROXIMATION OF A TENSOR AS A SUM OF TENSOR TRAINS
    Ehrlacher, Virginie
    Ruiz, Maria fuente
    Lombardi, Damiano
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02): : A664 - A688
  • [6] Quasioptimality of Skeleton Approximation of a Matrix in the Chebyshev Norm
    Goreinov, S. A.
    Tyrtyshnikov, E. E.
    DOKLADY MATHEMATICS, 2011, 83 (03) : 374 - 375
  • [7] Approximation Properties of Chebyshev Polynomials in the Legendre Norm
    Niu, Cuixia
    Liao, Huiqing
    Ma, Heping
    Wu, Hua
    MATHEMATICS, 2021, 9 (24)
  • [8] Quasioptimality of skeleton approximation of a matrix in the Chebyshev norm
    S. A. Goreinov
    E. E. Tyrtyshnikov
    Doklady Mathematics, 2011, 83 : 374 - 375
  • [9] Fast evaluation of ephemerides by polynomial approximation in the Chebyshev norm
    Coma, JC
    Lara, M
    Moratalla, TJL
    DYNAMICS, EPHEMERIDES AND ASTROMETRY OF THE SOLAR SYSTEM, 1996, (172): : 345 - 346
  • [10] On the optimal rank-1 approximation of matrices in the Chebyshev norm
    Morozov, Stanislav
    Smirnov, Matvey
    Zamarashkin, Nikolai
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 679 : 4 - 29