Belief as Question-Sensitive

被引:74
|
作者
Yalcin, Seth [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
WORLDS;
D O I
10.1111/phpr.12330
中图分类号
B [哲学、宗教];
学科分类号
01 ; 0101 ;
摘要
[No abstract available]
引用
收藏
页码:23 / 47
页数:25
相关论文
共 50 条
  • [41] BELIEF IN THE RIGHT TO QUESTION CHURCH TEACHINGS, 1958-71
    KOLLER, DB
    [J]. SOCIAL FORCES, 1979, 58 (01) : 290 - 304
  • [42] Belief in the medieval Maghreb - Sainthood in question, fourteenth-fifteenth century
    Lory, Pierre
    [J]. REVUE DE L HISTOIRE DES RELIGIONS, 2021, 239 (04) : 749 - 752
  • [43] Pragmatics in the False-Belief Task: Let the Robot Ask the Question!
    Baratgin, Jean
    Dubois-Sage, Marion
    Jacquet, Baptiste
    Stilgenbauer, Jean-Louis
    Jamet, Frank
    [J]. FRONTIERS IN PSYCHOLOGY, 2020, 11
  • [45] An easy A or a question of belief: pupil attitudes to Catholic religious education in Croatia
    Jokic, Boris
    Hargreaves, Linda
    [J]. BRITISH JOURNAL OF RELIGIOUS EDUCATION, 2015, 37 (01) : 4 - 19
  • [46] Induction Chemotherapy in Head and Neck Squamous Cell Carcinoma: A Question of Belief
    Karabajakian, Andy
    Gau, Max
    Reverdy, Thibault
    Neidhardt, Eve-Marie
    Fayette, Jerome
    [J]. CANCERS, 2019, 11 (01)
  • [47] Asking sensitive questions - The impact of data collection mode, question format, and question context
    Tourangeau, R
    Smith, TW
    [J]. PUBLIC OPINION QUARTERLY, 1996, 60 (02) : 275 - 304
  • [48] Incompatibilities between iterated and relevance-sensitive belief revision
    Aravanis, Theofanis I.
    Peppas, Pavlos
    Williams, Mary-Anne
    [J]. Journal of Artificial Intelligence Research, 2020, 69 : 85 - 108
  • [49] Confidence Interval for Sensitive Binomial Attribute : Direct Question Method and Indirect Question Method
    Ryu, Jea-Bok
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2015, 28 (01) : 75 - 82
  • [50] A Cost-Sensitive Deep Belief Network for Imbalanced Classification
    Zhang, Chong
    Tan, Kay Chen
    Li, Haizhou
    Hong, Geok Soon
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (01) : 109 - 122