Stability of coefficients in the Kronecker product of a hook and a rectangle

被引:0
|
作者
Ballantine, Cristina M. [1 ]
Hallahan, William T. [1 ,2 ]
机构
[1] Coll Holy Cross, Worcester, MA 01610 USA
[2] Yale Univ, New Haven, CT 06520 USA
关键词
Schur functions; Kronecker product; stability; q-discriminant; quantum Hall effect; SCHUR-FUNCTIONS; REPRESENTATIONS; SHAPES;
D O I
10.1088/1751-8113/49/5/055203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use recent work of Jonah Blasiak (2012 arXiv: 1209.2018) to prove a stability result for the coefficients in the Kronecker product of two Schur functions: one indexed by a hook partition and one indexed by a rectangle partition. We also give nearly sharp bounds for the size of the partition starting with which the Kronecker coefficients are stable. Moreover, we show that once the bound is reached, no new Schur functions appear in the decomposition of Kronecker product. We call this property superstability. Thus, one can recover the Schur decomposition of the Kronecker product from the smallest case in which the superstability holds. The bound for superstability is sharp. Our study of this particular case of the Kronecker product is motivated by its usefulness for the understanding of the quantum Hall effect (Scharf T et al 1994 J. Phys. A: Math. Gen 27 4211-9).
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Deligne categories and reduced Kronecker coefficients
    Inna Entova Aizenbud
    Journal of Algebraic Combinatorics, 2016, 44 : 345 - 362
  • [32] Some unimodal sequences of Kronecker coefficients
    Amanov, Alimzhan
    Yeliussizov, Damir
    MATHEMATISCHE ZEITSCHRIFT, 2025, 309 (01)
  • [33] EXTENDED KRONECKER PRODUCT OF MATRICES
    KUO, YE
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 56 (02) : 346 - 350
  • [34] SHUFFLES OF PERMUTATIONS AND THE KRONECKER PRODUCT
    GARSIA, AM
    REMMEL, J
    GRAPHS AND COMBINATORICS, 1985, 1 (03) : 217 - 263
  • [35] Kronecker product graph matching
    van Wyk, BJ
    van Wyk, MA
    PATTERN RECOGNITION, 2003, 36 (09) : 2019 - 2030
  • [36] Magic coverings and the Kronecker product
    Lopez, S. C.
    Muntaner-Batle, F. A.
    Rius-Font, M.
    UTILITAS MATHEMATICA, 2014, 95 : 73 - 84
  • [37] Lax representation and Kronecker product
    Steeb, WH
    Heng, LC
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (03) : 475 - 479
  • [38] Shifted Kronecker product systems
    Martin, Carla D. Moravitz
    Van Loan, Charles F.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) : 184 - 198
  • [39] The thickness of the Kronecker product of graphs
    Guo, Xia
    Yang, Yan
    ARS MATHEMATICA CONTEMPORANEA, 2020, 18 (02) : 339 - 357
  • [40] Lax representation and Kronecker product
    Steeb, WH
    Hardy, Y
    Stoop, R
    PHYSICA SCRIPTA, 2003, 67 (06) : 464 - 465