Stability of coefficients in the Kronecker product of a hook and a rectangle

被引:0
|
作者
Ballantine, Cristina M. [1 ]
Hallahan, William T. [1 ,2 ]
机构
[1] Coll Holy Cross, Worcester, MA 01610 USA
[2] Yale Univ, New Haven, CT 06520 USA
关键词
Schur functions; Kronecker product; stability; q-discriminant; quantum Hall effect; SCHUR-FUNCTIONS; REPRESENTATIONS; SHAPES;
D O I
10.1088/1751-8113/49/5/055203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use recent work of Jonah Blasiak (2012 arXiv: 1209.2018) to prove a stability result for the coefficients in the Kronecker product of two Schur functions: one indexed by a hook partition and one indexed by a rectangle partition. We also give nearly sharp bounds for the size of the partition starting with which the Kronecker coefficients are stable. Moreover, we show that once the bound is reached, no new Schur functions appear in the decomposition of Kronecker product. We call this property superstability. Thus, one can recover the Schur decomposition of the Kronecker product from the smallest case in which the superstability holds. The bound for superstability is sharp. Our study of this particular case of the Kronecker product is motivated by its usefulness for the understanding of the quantum Hall effect (Scharf T et al 1994 J. Phys. A: Math. Gen 27 4211-9).
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Computation of dilated Kronecker coefficients
    Baldoni, V.
    Vergne, M.
    Walter, M.
    JOURNAL OF SYMBOLIC COMPUTATION, 2018, 84 : 113 - 146
  • [22] ON THE COMPLEXITY OF COMPUTING KRONECKER COEFFICIENTS
    Pak, Igor
    Panova, Greta
    COMPUTATIONAL COMPLEXITY, 2017, 26 (01) : 1 - 36
  • [23] The ubiquitous Kronecker product
    Van Loan, CF
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 123 (1-2) : 85 - 100
  • [24] On the complexity of computing Kronecker coefficients
    Igor Pak
    Greta Panova
    computational complexity, 2017, 26 : 1 - 36
  • [25] A NOTE ON CERTAIN KRONECKER COEFFICIENTS
    Manivel, L.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (01) : 1 - 7
  • [26] Vanishing symmetric Kronecker coefficients
    Ressayre, Nicolas
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (02): : 231 - 246
  • [27] Quantum Complexity of the Kronecker Coefficients
    Bravyi, Sergey
    Chowdhury, Anirban
    Gosset, David
    Havlicek, Vojtech
    Zhu, Guanyu
    PRX QUANTUM, 2024, 5 (01):
  • [28] Vanishing symmetric Kronecker coefficients
    Nicolas Ressayre
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 231 - 246
  • [29] THE PARTITION ALGEBRA AND THE KRONECKER COEFFICIENTS
    Bowman, C.
    De Visscher, M.
    Orellana, R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (05) : 3647 - 3667
  • [30] Kronecker multiplicities in the (k, l) hook are polynomially bounded
    Regev, Amitai
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 200 (01) : 39 - 48