Simpler is better: Multilevel Abstraction with Graph Convolutional Recurrent Neural Network Cells for Traffic Prediction

被引:1
|
作者
Roudbari, Naghmeh Shafiee [1 ]
Patterson, Zachary [1 ]
Eicker, Ursula [1 ]
Poullis, Charalambos [1 ]
机构
[1] Concordia Univ, Gina Cody Sch Engn & Comp Sci, Montreal, PQ, Canada
关键词
Spatiotemporal Forecasting; Graph Neural Networks; Sequence-to-Sequence Modelling; Traffic Prediction;
D O I
10.1109/SSCI51031.2022.10022181
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, graph neural networks (GNNs) combined with variants of recurrent neural networks (RNNs) have reached state-of-the-art performance in spatiotemporal forecasting tasks. This is particularly the case for traffic forecasting, where GNN models use the graph structure of road networks to account for spatial correlation between links and nodes. Recent solutions are either based on complex graph operations or avoiding predefined graphs. This paper proposes a new sequence-to-sequence architecture to extract the spatiotemporal correlation at multiple levels of abstraction using GNN-RNN cells with sparse architecture to decrease training time compared to more complex designs. Encoding the same input sequence through multiple encoders, with an incremental increase in encoder layers, enables the network to learn general and detailed information through multilevel abstraction. We further present a new benchmark dataset of street-level segment traffic data from Montreal, Canada. Unlike highways, urban road segments are cyclic and characterized by complicated spatial dependencies. Experimental results on the METR-LA benchmark highway and our MSLTD street-level segment datasets demonstrate that our model improves performance by more than 7% for one-hour prediction compared to the baseline methods while reducing computing resource requirements by more than half compared to other competing methods.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [41] A Graph Convolutional Neural Network Model for Trajectory Prediction
    Di, Zichao
    Zhou, Yue
    Chen, Kun
    Chen, Zongzhi
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [42] Traffic State Prediction using Convolutional Neural Network
    Toncharoen, Ratchanon
    Piantanakulchai, Mongkut
    2018 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2018, : 250 - 255
  • [43] A Graph Convolutional Method for Traffic Flow Prediction in Highway Network
    Zhang, Tianpu
    Ding, Weilong
    Chen, Tao
    Wang, Zhe
    Chen, Jun
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [44] A Spatiotemporal Multiscale Graph Convolutional Network for Traffic Flow Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Wu, Dan
    Cui, Jianqun
    Chang, Yanan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) : 8705 - 8718
  • [45] Traffic Message Channel Prediction Based on Graph Convolutional Network
    Li, Ning
    Jia, Shuangcheng
    Li, Qian
    IEEE ACCESS, 2021, 9 : 135423 - 135431
  • [46] Traffic Speed Prediction Based on Spatial-Temporal Dynamic and Static Graph Convolutional Recurrent Network
    Wenxi, Y.A.N.G.
    Ziling, W.A.N.G.
    Tao, C.U.I.
    Yudong, L.U.
    Zhijian, Q.U.
    International Journal of Advanced Computer Science and Applications, 2024, 15 (12): : 518 - 529
  • [47] A traffic prediction method for missing data scenarios: graph convolutional recurrent ordinary differential equation network
    Jiang, Ming
    Liu, Zhiwei
    Xu, Yan
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (02)
  • [48] Traffic Flow Prediction Model Based on the Combination of Improved Gated Recurrent Unit and Graph Convolutional Network
    Zhao, Yun
    Han, Xue
    Xu, Xing
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [49] Mining the Graph Representation of Traffic Speed Data for Graph Convolutional Neural Network
    Mao, Jiannan
    Huang, Hao
    Chen, Yuting
    Lu, Weike
    Chen, Guoqiang
    Liu, Lan
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 1205 - 1210
  • [50] Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
    Liu, Duanyang
    Xu, Xinbo
    Xu, Wei
    Zhu, Bingqian
    SENSORS, 2021, 21 (19)