Observation of an Electric-Field-Induced Band Gap in Bilayer Graphene by Infrared Spectroscopy

被引:518
|
作者
Mak, Kin Fai [1 ]
Lui, Chun Hung [1 ]
Shan, Jie [2 ]
Heinz, Tony F. [1 ]
机构
[1] Columbia Univ, Dept Phys & Elect Engn, New York, NY 10027 USA
[2] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA
基金
美国国家科学基金会;
关键词
REFRACTIVE INDEX; TRANSISTOR;
D O I
10.1103/PhysRevLett.102.256405
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It has been predicted that application of a strong electric field perpendicular to the plane of bilayer graphene can induce a significant band gap. We have measured the optical conductivity of bilayer graphene with an efficient electrolyte top gate for a photon energy range of 0.2-0.7 eV. We see the emergence of new transitions as a band gap opens. A band gap approaching 200 meV is observed when an electric field similar to 1 V/nm is applied, inducing a carrier density of about 10(13) cm(-2). The magnitude of the band gap and the features observed in the infrared conductivity spectra are broadly compatible with calculations within a tight-binding model.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Band Gap Calculations of Bilayer Graphene and Bilayer Armchair Graphene Nanoribbon
    Sustini, E.
    Khairurrijal
    Noor, F. A.
    Syariati, R.
    [J]. 5TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS SCIENCES AND TECHNOLOGY (ICAMST 2017), 2018, 367
  • [32] Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect
    Castro, Eduardo V.
    Novoselov, K. S.
    Morozov, S. V.
    Peres, N. M. R.
    Dos Santos, J. M. B. Lopes
    Nilsson, Johan
    Guinea, F.
    Geim, A. K.
    Castro Neto, A. H.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (21)
  • [33] Effects of magnetism and electric field on the energy gap of bilayer graphene nanoflakes
    Sahu, Bhagawan
    Min, Hongki
    Banerjee, Sanjay K.
    [J]. PHYSICAL REVIEW B, 2010, 81 (04):
  • [34] Controlling the band gap in zigzag graphene nanoribbons with an electric field induced by a polar molecule
    Dalosto, Sergio D.
    Levine, Zachary H.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (22): : 8196 - 8199
  • [35] Multiple-gap structure in electric-field-induced surface superconductivity
    Mizohata, Yousuke
    Ichioka, Masanori
    Machida, Kazushige
    [J]. PHYSICAL REVIEW B, 2013, 87 (01)
  • [36] Electric-field-induced reversible avalanche breakdown in a GaAs microcrystal due to cross band gap impact ionization
    Klappenberger, F
    Renk, KF
    Summer, R
    Keldysh, L
    Rieder, B
    Wegscheider, W
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (04) : 704 - 706
  • [37] Strain Induced Intrinsic Band Gap in Chemically Exfoliated Bilayer Graphene
    Srivastava, Pawan Kumar
    Ghosh, Subhasis
    [J]. GRAPHENE, 2015, 3 (01) : 34 - 39
  • [38] Sizable Band Gap in Epitaxial Bilayer Graphene Induced by Silicene Intercalation
    Guo, Hui
    Zhang, Ruizi
    Li, Hang
    Wang, Xueyan
    Lu, Hongliang
    Qian, Kai
    Li, Geng
    Huang, Li
    Lin, Xiao
    Zhang, Yu-Yang
    Ding, Hong
    Du, Shixuan
    Pantelides, Sokrates T.
    Gao, Hong-Jun
    [J]. NANO LETTERS, 2020, 20 (04) : 2674 - 2680
  • [39] ELECTRIC-FIELD-INDUCED RESONANCES
    LU, KT
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (10) : 1446 - 1447
  • [40] Determination of the gate-tunable band gap and tight-binding parameters in bilayer graphene using infrared spectroscopy
    Kuzmenko, A. B.
    Crassee, I.
    van der Marel, D.
    Blake, P.
    Novoselov, K. S.
    [J]. PHYSICAL REVIEW B, 2009, 80 (16):