ONLINE DICTIONARY LEARNING FROM BIG DATA USING ACCELERATED STOCHASTIC APPROXIMATION ALGORITHMS

被引:0
|
作者
Slavakis, Konstantinos [1 ]
Giannakis, Georgios B. [1 ]
机构
[1] Univ Minnesota, Dept ECE, Digital Technol Ctr, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
COORDINATE DESCENT METHOD; CONVERGENCE; FACTORIZATION; OPTIMIZATION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Applications involving large-scale dictionary learning tasks motivate well online optimization algorithms for generally non-convex and non-smooth problems. In this big data context, the present paper develops an online learning framework by jointly leveraging the stochastic approximation paradigm with first-order acceleration schemes. The generally non-convex objective evaluated online at the resultant iterates enjoys quadratic rate of convergence. The generality of the novel approach is demonstrated in two online learning applications: (i) Online linear regression using the total least-squares approach; and, (ii) a semi-supervised dictionary learning approach to network-wide link load tracking and imputation of real data with missing entries. In both cases, numerical tests highlight the potential of the proposed online framework for big data network analytics.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Distributed dictionary learning for industrial process monitoring with big data
    Keke Huang
    Ke Wei
    Yonggang Li
    Chunhua Yang
    Applied Intelligence, 2021, 51 : 7718 - 7734
  • [42] Machine learning accelerated carbon neutrality research using big data——from predictive models to interatomic potentials
    WU LingJun
    XU ZhenMing
    WANG ZiXuan
    CHEN ZiJian
    HUANG ZhiChao
    PENG Chao
    PEI XiangDong
    LI XiangGuo
    MAILOA Jonathan P
    HSIEH Chang-Yu
    WU Tao
    YU Xue-Feng
    ZHAO HaiTao
    Science China(Technological Sciences), 2022, 65 (10) : 2274 - 2296
  • [43] Machine learning accelerated carbon neutrality research using big data—from predictive models to interatomic potentials
    LingJun Wu
    ZhenMing Xu
    ZiXuan Wang
    ZiJian Chen
    ZhiChao Huang
    Chao Peng
    XiangDong Pei
    XiangGuo Li
    Jonathan P. Mailoa
    Chang-Yu Hsieh
    Tao Wu
    Xue-Feng Yu
    HaiTao Zhao
    Science China Technological Sciences, 2022, 65 : 2274 - 2296
  • [44] Distributed dictionary learning for industrial process monitoring with big data
    Huang, Keke
    Wei, Ke
    Li, Yonggang
    Yang, Chunhua
    APPLIED INTELLIGENCE, 2021, 51 (11) : 7718 - 7734
  • [45] Dictionary Learning of Binary Atoms by using a Smooth Approximation
    Vargas, Edwin
    Arguello, Henry
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 2144 - 2148
  • [46] A Classifier Using Online Bagging Ensemble Method for Big Data Stream Learning
    Yanxia Lv
    Sancheng Peng
    Ying Yuan
    Cong Wang
    Pengfei Yin
    Jiemin Liu
    Cuirong Wang
    Tsinghua Science and Technology, 2019, (04) : 379 - 388
  • [47] A Classifier Using Online Bagging Ensemble Method for Big Data Stream Learning
    Yanxia Lv
    Sancheng Peng
    Ying Yuan
    Cong Wang
    Pengfei Yin
    Jiemin Liu
    Cuirong Wang
    Tsinghua Science and Technology, 2019, 24 (04) : 379 - 388
  • [48] A Classifier Using Online Bagging Ensemble Method for Big Data Stream Learning
    Lv, Yanxia
    Peng, Sancheng
    Yuan, Ying
    Wang, Cong
    Yin, Pengfei
    Liu, Jiemin
    Wang, Cuirong
    TSINGHUA SCIENCE AND TECHNOLOGY, 2019, 24 (04) : 379 - 388
  • [49] Online Learning Algorithms for Mobile Data Offloading
    Sushma, M.
    Naveen, K. P.
    2023 15TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS, COMSNETS, 2023,
  • [50] Learning automata-accelerated greedy algorithms for stochastic submodular maximization
    Di, Chong
    Li, Fangqi
    Xu, Pengyao
    Guo, Ying
    Chen, Chao
    Shu, Minglei
    KNOWLEDGE-BASED SYSTEMS, 2023, 282