ONLINE DICTIONARY LEARNING FROM BIG DATA USING ACCELERATED STOCHASTIC APPROXIMATION ALGORITHMS

被引:0
|
作者
Slavakis, Konstantinos [1 ]
Giannakis, Georgios B. [1 ]
机构
[1] Univ Minnesota, Dept ECE, Digital Technol Ctr, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
COORDINATE DESCENT METHOD; CONVERGENCE; FACTORIZATION; OPTIMIZATION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Applications involving large-scale dictionary learning tasks motivate well online optimization algorithms for generally non-convex and non-smooth problems. In this big data context, the present paper develops an online learning framework by jointly leveraging the stochastic approximation paradigm with first-order acceleration schemes. The generally non-convex objective evaluated online at the resultant iterates enjoys quadratic rate of convergence. The generality of the novel approach is demonstrated in two online learning applications: (i) Online linear regression using the total least-squares approach; and, (ii) a semi-supervised dictionary learning approach to network-wide link load tracking and imputation of real data with missing entries. In both cases, numerical tests highlight the potential of the proposed online framework for big data network analytics.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Online Learning Research Based on Big Data
    Zhang, Shihong
    2016 2ND INTERNATIONAL CONFERENCE ON FUTURE COMPUTER SUPPORTED EDUCATION (FCSE 2016), 2016, : 70 - 74
  • [32] Online Similarity Learning for Big Data with Overfitting
    Cong, Yang
    Liu, Ji
    Fan, Baojie
    Zeng, Peng
    Yu, Haibin
    Luo, Jiebo
    IEEE TRANSACTIONS ON BIG DATA, 2018, 4 (01) : 78 - 89
  • [33] ONLINE SKETCHING FOR BIG DATA SUBSPACE LEARNING
    Mardani, Morteza
    Giannakis, Georgios B.
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2511 - 2515
  • [34] An Online Sample-Based Method for Mode Estimation Using ODE Analysis of Stochastic Approximation Algorithms
    Kamanchi, Chandramouli
    Diddigi, Raghuram Bharadwaj
    Prabuchandran, K. J.
    Bhatnagar, Shalabh
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 697 - 702
  • [35] Learning Bayesian networks from incomplete data with stochastic search algorithms
    Myers, JW
    Laskey, KB
    Levitt, T
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1999, : 476 - 485
  • [36] Predictive Visual Analysis of Twitter Big Data Originated from Cloud using Machine Learning Algorithms
    Shyamasundar, L. B.
    Rani, Jhansi P.
    2017 IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING IN EMERGING MARKETS (CCEM 2017), 2017, : 87 - 92
  • [37] Big Data Analytics in Healthcare Using Machine Learning Algorithms: A Comparative Study
    Akundi, Sai Hanuman
    Soujanya, R.
    Madhuri, P. M.
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (13) : 19 - 32
  • [38] Egyptian social insurance big data mining using supervised learning algorithms
    Senousy Y.
    Hanna W.K.
    Shehab A.
    Riad A.M.
    El-Bakry H.M.
    Elkhamisy N.
    Revue d'Intelligence Artificielle, 2019, 33 (05): : 349 - 357
  • [39] Machine learning accelerated carbon neutrality research using big data——from predictive models to interatomic potentials
    WU LingJun
    XU ZhenMing
    WANG ZiXuan
    CHEN ZiJian
    HUANG ZhiChao
    PENG Chao
    PEI XiangDong
    LI XiangGuo
    MAILOA Jonathan P
    HSIEH ChangYu
    WU Tao
    YU XueFeng
    ZHAO HaiTao
    Science China(Technological Sciences), 2022, (10) : 2274 - 2296
  • [40] Biomedical Image Classification in a Big Data Architecture Using Machine Learning Algorithms
    Tchito Tchapga, Christian
    Mih, Thomas Attia
    Tchagna Kouanou, Aurelle
    Fozin Fonzin, Theophile
    Kuetche Fogang, Platini
    Mezatio, Brice Anicet
    Tchiotsop, Daniel
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021