ONLINE DICTIONARY LEARNING FROM BIG DATA USING ACCELERATED STOCHASTIC APPROXIMATION ALGORITHMS

被引:0
|
作者
Slavakis, Konstantinos [1 ]
Giannakis, Georgios B. [1 ]
机构
[1] Univ Minnesota, Dept ECE, Digital Technol Ctr, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
COORDINATE DESCENT METHOD; CONVERGENCE; FACTORIZATION; OPTIMIZATION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Applications involving large-scale dictionary learning tasks motivate well online optimization algorithms for generally non-convex and non-smooth problems. In this big data context, the present paper develops an online learning framework by jointly leveraging the stochastic approximation paradigm with first-order acceleration schemes. The generally non-convex objective evaluated online at the resultant iterates enjoys quadratic rate of convergence. The generality of the novel approach is demonstrated in two online learning applications: (i) Online linear regression using the total least-squares approach; and, (ii) a semi-supervised dictionary learning approach to network-wide link load tracking and imputation of real data with missing entries. In both cases, numerical tests highlight the potential of the proposed online framework for big data network analytics.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Stochastic Approximation vis-a-vis Online Learning for Big Data Analytics
    Slavakis, Konstantinos
    Kim, Seung-Jun
    Mateos, Gonzalo
    Giannakis, Georgios B.
    IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (06) : 124 - 129
  • [2] Online learning algorithms for big data analytics: A survey
    Li, Zhijie
    Li, Yuanxiang
    Wang, Feng
    He, Guoliang
    Kuang, Li
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2015, 52 (08): : 1707 - 1721
  • [3] Accelerated Randomized Coordinate Descent Algorithms for Stochastic Optimization and Online Learning
    Bhandari, Akshita
    Singh, Chandramani
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 12, 2019, 11353 : 1 - 15
  • [4] Accelerated multi-task online learning algorithm for big data stream
    Li, Zhijie
    Li, Yuanxiang
    Wang, Feng
    Kuang, Li
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2015, 52 (11): : 2545 - 2554
  • [5] Approximation algorithms for stochastic online matching with reusable resources
    Meghan Shanks
    Ge Yu
    Sheldon H. Jacobson
    Mathematical Methods of Operations Research, 2023, 98 : 43 - 56
  • [6] Approximation algorithms for stochastic online matching with reusable resources
    Shanks, Meghan
    Yu, Ge
    Jacobson, Sheldon H.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2023, 98 (01) : 43 - 56
  • [7] Stochastic Learning Rate Optimization in the Stochastic Approximation and Online Learning Settings
    Mamalis, Theodoros
    Stipanovic, Dusan
    Voulgaris, Petros
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 4286 - 4291
  • [8] Segmentation of 4D Echocardiography Using Stochastic Online Dictionary Learning
    Huang, Xiaojie
    Dione, Donald P.
    Lin, Ben A.
    Bregasi, Alda
    Sinusas, Albert J.
    Duncan, James S.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2013), PT III, 2013, 8151 : 57 - 65
  • [9] Stochastic Learning Rate With Memory: Optimization in the Stochastic Approximation and Online Learning Settings
    Mamalis, Theodoros
    Stipanovic, Dusan
    Voulgaris, Petros
    IEEE CONTROL SYSTEMS LETTERS, 2022, 7 : 419 - 424
  • [10] Big data for online learning systems
    Dahdouh, Karim
    Dakkak, Ahmed
    Oughdir, Lahcen
    Messaoudi, Faycal
    EDUCATION AND INFORMATION TECHNOLOGIES, 2018, 23 (06) : 2783 - 2800