Analysis of the Multi-Dimensional Navier-Stokes Equation by Caputo Fractional Operator

被引:13
|
作者
Albalawi, Kholoud Saad [1 ]
Mishra, Manvendra Narayan [2 ]
Goswami, Pranay [3 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 11566, Saudi Arabia
[2] AMITY Univ Rajasthan, AMITY Sch Appl Sci, Dept Math, Jaipur 303002, India
[3] Dr R Ambedkar Univ Delhi, Sch Liberal Studies, Dept Math, Delhi 110006, India
关键词
Navier-Stokes equation; Caputo derivative; existence and uniqueness; Sumudu transform; MODEL;
D O I
10.3390/fractalfract6120743
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we investigate the solution of the fractional multidimensional Navier-Stokes equation based on the Caputo fractional derivative operator. The behavior of the solution regarding the Navier-Stokes equation system using the Sumudu transform approach is discussed analytically and further discussed graphically.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Nash Embedding, Shape Operator and Navier-Stokes Equation on a Riemannian Manifold
    Fang, Shizan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (02): : 237 - 252
  • [42] Nash Embedding, Shape Operator and Navier-Stokes Equation on a Riemannian Manifold
    Shizan FANG
    ActaMathematicaeApplicataeSinica, 2020, 36 (02) : 237 - 252
  • [43] Numerical analysis of the space fractional Navier-Stokes equations
    Xu, Huanying
    Jiang, Xiaoyun
    Yu, Bo
    APPLIED MATHEMATICS LETTERS, 2017, 69 : 94 - 100
  • [44] Convergence and Error Estimates for a Finite Difference Scheme for the Multi-dimensional Compressible Navier-Stokes System
    Mizerova, Hana
    She, Bangwei
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (01)
  • [45] The Fractional Analysis of a Nonlinear mKdV Equation with Caputo Operator
    Alyousef, Haifa A.
    Shah, Rasool
    Shah, Nehad Ali
    Chung, Jae Dong
    Ismaeel, Sherif M. E.
    El-Tantawy, Samir A.
    FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [46] REMARKS ON THE TWO-DIMENSIONAL STOCHASTIC NAVIER-STOKES EQUATION
    SCHMALFUSS, B
    MATHEMATISCHE NACHRICHTEN, 1987, 131 : 19 - 32
  • [48] Conditions implying regularity of the three dimensional navier-stokes equation
    Montgomery-Smith S.
    Applications of Mathematics, 2005, 50 (05) : 451 - 464
  • [49] A Semianalytical Approach to the Solution of Time-Fractional Navier-Stokes Equation
    Ali, Zeeshan
    Nia, Shayan Naseri
    Rabiei, Faranak
    Shah, Kamal
    Tan, Ming Kwang
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [50] Lp-solutions of the Navier-Stokes equation with fractional Brownian noise
    Ferrario, Benedetta
    Olivera, Christian
    AIMS MATHEMATICS, 2018, 3 (04): : 539 - 553