Analysis of the Multi-Dimensional Navier-Stokes Equation by Caputo Fractional Operator

被引:13
|
作者
Albalawi, Kholoud Saad [1 ]
Mishra, Manvendra Narayan [2 ]
Goswami, Pranay [3 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 11566, Saudi Arabia
[2] AMITY Univ Rajasthan, AMITY Sch Appl Sci, Dept Math, Jaipur 303002, India
[3] Dr R Ambedkar Univ Delhi, Sch Liberal Studies, Dept Math, Delhi 110006, India
关键词
Navier-Stokes equation; Caputo derivative; existence and uniqueness; Sumudu transform; MODEL;
D O I
10.3390/fractalfract6120743
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we investigate the solution of the fractional multidimensional Navier-Stokes equation based on the Caputo fractional derivative operator. The behavior of the solution regarding the Navier-Stokes equation system using the Sumudu transform approach is discussed analytically and further discussed graphically.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A novel approach for multi dimensional fractional coupled Navier–Stokes equation
    Kumbinarasaiah S.
    SeMA Journal, 2023, 80 (2) : 261 - 282
  • [22] A unique approach for solving the fractional Navier-Stokes equation
    Zayir, Muslim Yousif
    Jassim, Hassan Kamil
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (08) : 2611 - 2616
  • [23] Analytical solution of the time fractional Navier-Stokes equation
    Jaber, Khaled K.
    Ahmad, Rami S.
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 1917 - 1927
  • [24] Formulas for Drag Coefficient and the Navier-Stokes Fractional Equation
    Roberto Mercado, Jose
    Guido, Pedro
    Sanchez-Sesma, Jorge
    Iniguez, Mauro
    TECNOLOGIA Y CIENCIAS DEL AGUA, 2014, 5 (02) : 149 - 160
  • [25] Attractors for Navier–Stokes equation with fractional operator in the memory term
    Freitas M.M.
    Araújo G.M.
    Fonseca J.S.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2021, 67 (2) : 269 - 284
  • [26] Infinite dimensional dynamical systems and the Navier-Stokes equation
    Wayne, C. Eugene
    HAMILTONIAN DYNAMICAL SYSTEMS AND APPLICATIONS, 2008, : 103 - 141
  • [27] FRACTIONAL NAVIER-STOKES EQUATIONS
    Cholewa, Jan W.
    Dlotko, Tomasz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 2967 - 2988
  • [28] Spectral methods for the time-fractional Navier-Stokes equation
    Zheng, Rumeng
    Jiang, Xiaoyun
    APPLIED MATHEMATICS LETTERS, 2019, 91 : 194 - 200
  • [29] ANALYSIS OF SOME ASSUMPTIONS OF NAVIER-STOKES EQUATION
    Budarin, V.
    PROBLEMELE ENERGETICII REGIONALE, 2010, (02): : 59 - 65
  • [30] ON THE PERTURBATION EQUATION OF NAVIER-STOKES EQUATION
    Gao Ge (Beijing Univisit of Aeronautics and Astonauttcs)
    航空动力学报, 1989, (02) : 189 - 192