A monotone version of the Sokolov property and monotone retractability in function spaces

被引:15
|
作者
Rojas-Hernandez, R. [1 ]
Tkachuk, V. V. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
[2] Univ Autonoma Metropolitana, Dept Matemat, Mexico City 09340, DF, Mexico
关键词
Lindelof Sigma-space; Retraction; omega-Monotone operator; Monotonically retractable space; Simple space; Sokolov space; Monotonically Sokolov space; Gul'ko space; Normal space; Collectionwise normal space; Lindelof space; Function space; Extent;
D O I
10.1016/j.jmaa.2013.10.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the monotone Sokolov property and show that it is dual to monotone retractability in the sense that X is monotonically retractable if and only if C-p(X) is monotonically Sokolov. Besides, a space X is monotonically Sokolov if and only if C-p(X) is monotonically retractable. Monotone retractability and monotone Sokolov property are shown to be preserved by R-quotient images and F-sigma-subspaces. Furthermore, every monotonically retractable space is Sokolov so it is collectionwise normal and has countable extent. We also establish that if X and C-p(X) are Lindelof Sigma-spaces then they are both monotonically retractable and have the monotone Sokolov property. An example is given of a space X such that C-p(X) has the Lindelof Sigma-property but neither X nor C-p(X) is monotonically retractable. We also establish that every Lindelof Sigma-space with a unique non-isolated point is monotonically retractable. On the other hand, each Lindelof space with a unique non-isolated point is monotonically Sokolov. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 50 条
  • [41] Monotone metrics on matrix spaces
    Petz, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 244 : 81 - 96
  • [42] MONOTONE OPERATORS IN ASPLUND SPACES
    KENDEROV, PS
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1977, 30 (07): : 963 - 964
  • [43] On the fixed point property in direct sums of Banach spaces with strictly monotone norms
    Prus, Stanislaw
    Wisnicki, Andrzej
    STUDIA MATHEMATICA, 2008, 186 (01) : 87 - 99
  • [44] Hausdorff and Dunkl–Hausdorff operators in Lebesgue spaces for monotone functions and monotone weights
    Sandhya Jain
    Pankaj Jain
    Positivity, 2023, 27
  • [45] FIXED POINTS OF MONOTONE ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN MODULAR FUNCTION SPACES
    Alfuraidan, M. R.
    Bachar, M.
    Khamsi, M. A.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (04) : 565 - 573
  • [46] Every monotone graph property is testable
    Alon, Noga
    Shapira, Asaf
    SIAM JOURNAL ON COMPUTING, 2008, 38 (02) : 505 - 522
  • [47] On the Typical Structure of Graphs in a Monotone Property
    Janson, Svante
    Uzzell, Andrew J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (03):
  • [48] On the Lebesgue property of monotone convex functions
    Owari, Keita
    MATHEMATICS AND FINANCIAL ECONOMICS, 2014, 8 (02) : 159 - 167
  • [49] Notes on monotone Lindelöf property
    Ai-Jun Xu
    Wei-Xue Shi
    Czechoslovak Mathematical Journal, 2009, 59 : 943 - 955
  • [50] A new convexity property for monotone operators
    Zalinescu, Constantin
    JOURNAL OF CONVEX ANALYSIS, 2006, 13 (3-4) : 883 - 887