Hausdorff and Dunkl–Hausdorff operators in Lebesgue spaces for monotone functions and monotone weights

被引:0
|
作者
Sandhya Jain
Pankaj Jain
机构
[1] Vivekananda College (University of Delhi),Department of Mathematics
[2] South Asian University,Department of Mathematics
来源
Positivity | 2023年 / 27卷
关键词
Hausdorff operator; Dunkl–Hausdorff operator; Monotone functions; Boundedness; Sawyer’s duality principle; 47B38; 26D10; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the Lvp(R+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p_v(\mathbb {R}^+)$$\end{document}-Luq(R+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q_u(\mathbb {R}^+)$$\end{document} boundedness of the Hausdorff operator Hϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\phi $$\end{document} on the cone of non-increasing functions for 1<p≤q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p\le q<\infty $$\end{document} as well as 1<q<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<p<\infty $$\end{document}. We also consider the more general Dunkl–Hausdorff operator Hα,ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\alpha ,\phi }$$\end{document} and characterize its weighted Lp(R+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\mathbb {R}^+)$$\end{document} boundedness for monotone weights.
引用
收藏
相关论文
共 50 条
  • [1] Hausdorff and Dunkl-Hausdorff operators in Lebesgue spaces for monotone functions and monotone weights
    Jain, Sandhya
    Jain, Pankaj
    POSITIVITY, 2023, 27 (01)
  • [2] Boundedness of bilinear Dunkl-Hausdorff operators on products of Lebesgue and Morrey spaces
    Liu, Rui
    Zhao, Fayou
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (09) : 747 - 760
  • [3] BOUNDEDNESS OF THE DUNKL-HAUSDORFF OPERATOR IN LEBESGUE SPACES
    Jain, Sandhya
    Fiorenza, Alberto
    Jain, Pankaj
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) : 2031 - 2044
  • [4] On the Structure of Normal Hausdorff Operators on Lebesgue Spaces
    Mirotin, A. R.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2019, 53 (04) : 261 - 269
  • [5] Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces
    Chen, Jiecheng
    Dai, Jiawei
    Fan, Dashan
    Zhu, Xiangrong
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1647 - 1664
  • [6] On the Structure of Normal Hausdorff Operators on Lebesgue Spaces
    A. R. Mirotin
    Functional Analysis and Its Applications, 2019, 53 : 261 - 269
  • [7] Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces
    Jiecheng Chen
    Jiawei Dai
    Dashan Fan
    Xiangrong Zhu
    ScienceChina(Mathematics), 2018, 61 (09) : 109 - 126
  • [8] Rough Hausdorff operators on Lebesgue spaces with variable exponent
    Ziwei Li
    Jiman Zhao
    Annals of Functional Analysis, 2023, 14
  • [9] Rough Hausdorff operators on Lebesgue spaces with variable exponent
    Li, Ziwei
    Zhao, Jiman
    ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (04)
  • [10] HAUSDORFF MONOTONE EXTENSIONS OF MAPS
    KOHLI, JK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (06): : A600 - A600