Convergence to stationary states in the Maxwell-Bloch system from nonlinear optics

被引:4
|
作者
Jochmann, F [1 ]
机构
[1] Humboldt Univ, Inst Angew Math, Berlin, Germany
关键词
D O I
10.1090/qam/1900496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Maxwell-Bloch equations from nonlinear optics are addressed. First, suitable weak formulation admitting discontinuous solutions to the equations and an existence proof for weak solutions are given. Furthermore, the long-time asymptotic behavior of the solutions (E,H,P) is highlighted. Results are detailed in terms of several theorems.
引用
收藏
页码:317 / 339
页数:23
相关论文
共 50 条
  • [41] New Symmetric Periodic Solutions for the Maxwell-Bloch Differential System
    Candido, M. R.
    Llibre, J.
    Valls, C.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2019, 22 (02)
  • [42] Nonlinear tunneling of nonautonomous optical solitons in combined nonlinear Schrodinger and Maxwell-Bloch systems
    Rajan, M. S. Mani
    Mahalingam, A.
    Uthayakumar, A.
    JOURNAL OF OPTICS, 2012, 14 (10)
  • [43] Global dynamics of the Maxwell-Bloch system with invariant algebraic surfaces
    Dias, F. S.
    Valls, Claudia
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2020, 35 (04): : 668 - 681
  • [44] Hamiltonian flows for a reduced Maxwell-Bloch system with permanent dipole
    Agrotis, M
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 183 (1-2) : 141 - 158
  • [45] Solving the multi-level Maxwell-Bloch equations using GPGPU computing for the simulation of nonlinear optics in atomic gases
    Costa, J. C.
    Gomes, M.
    Alves, R. A.
    Silva, N. A.
    Guerreiro, A.
    THIRD INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS, 2017, 10453
  • [46] Nonlinear exceptional-point lasing with ab initio Maxwell-Bloch theory
    Benzaouia, Mohammed
    Stone, A. D.
    Johnson, Steven G.
    APL PHOTONICS, 2022, 7 (12)
  • [47] NONLINEAR PLANE-WAVE SOLUTIONS IN THE SEMICLASSIC MAXWELL-BLOCH LASER EQUATIONS
    PASTOR, I
    GARCIA, VMP
    SANZ, FE
    GUERRA, JM
    VAZQUEZ, L
    PHYSICA D, 1993, 66 (3-4): : 412 - 426
  • [48] Patterns of rogue waves in the sharp-line Maxwell-Bloch system
    Duan, Zhengyan
    Tao, Xiuyu
    Yang, Bo
    CHAOS SOLITONS & FRACTALS, 2024, 187
  • [49] On the Maxwell-Bloch system in the sharp-line limit without solitons
    Li, Sitai
    Miller, Peter D.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (01) : 457 - 542
  • [50] Nonlinear tunneling of bright and dark rogue waves in combined nonlinear Schrodinger and Maxwell-Bloch systems
    Raju, Thokala Soloman
    Pal, Ritu
    JOURNAL OF MODERN OPTICS, 2018, 65 (09) : 1111 - 1120