Convergence to stationary states in the Maxwell-Bloch system from nonlinear optics

被引:4
|
作者
Jochmann, F [1 ]
机构
[1] Humboldt Univ, Inst Angew Math, Berlin, Germany
关键词
D O I
10.1090/qam/1900496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Maxwell-Bloch equations from nonlinear optics are addressed. First, suitable weak formulation admitting discontinuous solutions to the equations and an existence proof for weak solutions are given. Furthermore, the long-time asymptotic behavior of the solutions (E,H,P) is highlighted. Results are detailed in terms of several theorems.
引用
收藏
页码:317 / 339
页数:23
相关论文
共 50 条
  • [21] SIMILARITY SOLUTIONS OF THE DEFORMED MAXWELL-BLOCH SYSTEM
    KITAEV, AV
    RYBIN, AV
    TIMONEN, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (14): : 3583 - 3595
  • [22] SOLUTION OF GOURSAT PROBLEM FOR THE MAXWELL-BLOCH SYSTEM
    KISELEV, OM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1994, 98 (01) : 20 - 26
  • [23] Degenerate soliton, breather and localized solutions for a nonlinear Schrodinger and Maxwell-Bloch system
    Xiao, Yun-Shan
    Hu, Song-Hua
    Jin, Yi-Dong
    Xie, Xi-Yang
    APPLIED MATHEMATICS LETTERS, 2021, 121
  • [24] Numerical methods for the bidimensional Maxwell-Bloch equations in nonlinear crystals
    Bourgeade, A
    Saut, O
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 213 (02) : 823 - 843
  • [25] Nonautonomous characteristics of the breathers and rogue waves for a amplifier nonlinear Schrodinger Maxwell-Bloch system
    Wang, Lei
    Li, Xiao
    Zhang, Lu Lu
    Li, Min
    Qi, Feng-Hua
    EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (09):
  • [26] MULTISOLITON SOLUTIONS OF A COUPLED SYSTEM OF THE NONLINEAR SCHRODINGER-EQUATION AND THE MAXWELL-BLOCH EQUATIONS
    KAKEI, S
    SATSUMA, J
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (03) : 885 - 894
  • [27] HIGH FREQUENCY BEHAVIOR OF THE MAXWELL-BLOCH MODEL WITH RELAXATION: CONVERGENCE TO THE SCHRODINGER-RATE SYSTEM
    Castella, F.
    Dumas, E.
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (03) : 355 - 401
  • [28] Identifying weak foci and centers in the Maxwell-Bloch system
    Liu, Lingling
    Aybar, O. Ozgur
    Romanovski, Valery G.
    Zhang, Weinian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 549 - 571
  • [29] Various solitons induced by relative phase in the nonlinear Schrödinger Maxwell-Bloch system
    Ren, Yang
    Guo, Liang
    Cao, Xin-Wei
    Duan, Liang
    CHAOS, 2024, 34 (01)
  • [30] Maxwell-Bloch Equations as Predator-Prey System
    Hacinliyan, A. S.
    Aybar, O. O.
    Kusbeyzi, I.
    Temizer, I.
    Akkaya, E. E.
    CHAOTIC SYSTEMS: THEORY AND APPLICATIONS, 2010, : 93 - 100