Voronoi diagram in simply connected complete manifold

被引:0
|
作者
Onishi, K [1 ]
Itoh, J
机构
[1] Univ Electrocommun, Grad Sch Informat Syst, Chofu, Tokyo 1828585, Japan
[2] Kumamoto Univ, Fac Educ, Kumamoto 8608555, Japan
关键词
Voronoi diagram; Hadamard manifold; simply connected complete manifold;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we deal with Voronoi diagram in simply connected complete manifold with non positive curvature, called Hadamard manifold. We prove that a part of the Voronoi diagram can be characterized by hyperbolic Voronoi diagram. Voronoi diagram in simply connected complete manifold is also characterized for a given set of points satisfying a distance condition.
引用
收藏
页码:944 / 948
页数:5
相关论文
共 50 条
  • [41] An example of a simply connected surface bounding a region which is not simply connected
    Alexander, JW
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1924, 10 : 8 - 10
  • [42] New Voronoi Diagram Algorithm of Multiply-Connected Planar Areas in the Selective Laser Melting
    钱波
    张李超
    史玉升
    刘冰
    TsinghuaScienceandTechnology, 2009, 14(S1) (S1) : 137 - 143
  • [43] New Voronoi Diagram Algorithm of Multiply-Connected Planar Areas in the Selective Laser Melting
    Qian, Bo
    Zhang, Lichao
    Shi, Yusheng
    Liu, Bing
    Tsinghua Science and Technology, 2009, 14 (SUPPL. 1): : 137 - 143
  • [44] ON A CONSTRUCTION OF COMPLETE SIMPLY-CONNECTED RIEMANNIAN-MANIFOLDS WITH NEGATIVE CURVATURE
    KITAHARA, H
    KAWAKAMI, H
    PAK, JS
    NAGOYA MATHEMATICAL JOURNAL, 1989, 113 : 7 - 13
  • [45] VORONOI DIAGRAM FOR MULTIPLY-CONNECTED POLYGONAL DOMAINS. II: IMPLEMENTATION AND APPLICATION.
    Meshkat, Siavash N.
    Sakkas, Constantine M.
    IBM Journal of Research and Development, 1987, 31 (03): : 373 - 381
  • [46] PARALLEL VORONOI DIAGRAM IN L1 (LINFINITY) METRIC ON A MESH-CONNECTED COMPUTER
    JEONG, CS
    PARALLEL COMPUTING, 1991, 17 (2-3) : 241 - 252
  • [47] The Voronoi diagram of curved objects
    Alt, H
    Cheong, O
    Vigneron, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 34 (03) : 439 - 453
  • [48] The graph Voronoi diagram with applications
    Erwig, M
    NETWORKS, 2000, 36 (03) : 156 - 163
  • [49] Optical generation of Voronoi diagram
    Giavazzi, F.
    Cerbino, R.
    Mazzoni, S.
    Giglio, M.
    Vailati, A.
    OPTICS EXPRESS, 2008, 16 (07) : 4819 - 4823
  • [50] Voronoi diagram in the flow field
    Nishida, T
    Sugihara, K
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2003, 2906 : 26 - 35