Voronoi diagram in simply connected complete manifold

被引:0
|
作者
Onishi, K [1 ]
Itoh, J
机构
[1] Univ Electrocommun, Grad Sch Informat Syst, Chofu, Tokyo 1828585, Japan
[2] Kumamoto Univ, Fac Educ, Kumamoto 8608555, Japan
关键词
Voronoi diagram; Hadamard manifold; simply connected complete manifold;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we deal with Voronoi diagram in simply connected complete manifold with non positive curvature, called Hadamard manifold. We prove that a part of the Voronoi diagram can be characterized by hyperbolic Voronoi diagram. Voronoi diagram in simply connected complete manifold is also characterized for a given set of points satisfying a distance condition.
引用
收藏
页码:944 / 948
页数:5
相关论文
共 50 条
  • [21] Rational cohomology of the free loop space of a simply connected 4-manifold
    A. Yu. Onishchenko
    Th. Yu. Popelensky
    Journal of Fixed Point Theory and Applications, 2012, 12 : 69 - 92
  • [22] AN IMPROVED PARALLEL ALGORITHM FOR CONSTRUCTING VORONOI DIAGRAM ON A MESH-CONNECTED COMPUTER
    JEONG, CS
    PARALLEL COMPUTING, 1991, 17 (4-5) : 505 - 514
  • [23] VORONOI DIAGRAM FOR MULTIPLY-CONNECTED POLYGONAL DOMAINS .1. ALGORITHM
    SRINIVASAN, V
    NACKMAN, LR
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1987, 31 (03) : 361 - 372
  • [24] Stabilization of half-skyrmions: Heisenberg spins on a non-simply connected manifold
    Saxena, A
    Dandoloff, R
    PHYSICAL REVIEW B, 2002, 66 (10):
  • [25] ON A WEAKLY UNKNOTTED 2-SPHERE IN A SIMPLY-CONNECTED 4-MANIFOLD
    MATUMOTO, T
    OSAKA JOURNAL OF MATHEMATICS, 1984, 21 (03) : 489 - 492
  • [26] Rounding Voronoi diagram
    Devillers, O
    Gandoin, PM
    THEORETICAL COMPUTER SCIENCE, 2002, 283 (01) : 203 - 221
  • [27] The stability of the Voronoi diagram
    Vyalyi, MN
    Gordeyev, EN
    Tarasov, SP
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1996, 36 (03) : 405 - 414
  • [28] Rounding Voronoi diagram
    Devillers, O
    Gandoin, PM
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, 1999, 1568 : 375 - 387
  • [29] Uncertain Voronoi diagram
    Jooyandeh, Mohammadreza
    Mohades, Ali
    Mirzakhah, Maryam
    INFORMATION PROCESSING LETTERS, 2009, 109 (13) : 709 - 712
  • [30] The anchored Voronoi diagram
    Díaz-Báñez, JM
    Gómez, F
    Ventura, I
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 3, 2004, 3045 : 207 - 216