Voronoi diagram in simply connected complete manifold

被引:0
|
作者
Onishi, K [1 ]
Itoh, J
机构
[1] Univ Electrocommun, Grad Sch Informat Syst, Chofu, Tokyo 1828585, Japan
[2] Kumamoto Univ, Fac Educ, Kumamoto 8608555, Japan
关键词
Voronoi diagram; Hadamard manifold; simply connected complete manifold;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we deal with Voronoi diagram in simply connected complete manifold with non positive curvature, called Hadamard manifold. We prove that a part of the Voronoi diagram can be characterized by hyperbolic Voronoi diagram. Voronoi diagram in simply connected complete manifold is also characterized for a given set of points satisfying a distance condition.
引用
收藏
页码:944 / 948
页数:5
相关论文
共 50 条
  • [1] GENUS OF A CLOSED SIMPLY CONNECTED MANIFOLD
    ANDREWS, P
    MICHIGAN MATHEMATICAL JOURNAL, 1976, 23 (04) : 309 - 319
  • [2] The Voronoi Conjecture for Parallelohedra with Simply Connected δ-Surfaces
    Garber, A.
    Gavrilyuk, A.
    Magazinov, A.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (02) : 245 - 260
  • [3] Principles of the Complete Voronoi Diagram Localization
    Lu, Gang
    Zhou, Mingtian
    Wang, Xiaoming
    Li, Xiang-Yang
    Wu, Xiaojun
    Zhang, Yumei
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2016, 15 (08) : 2048 - 2063
  • [4] THE CONFORMAL GROUP OF A COMPACT SIMPLY CONNECTED LORENTZIAN MANIFOLD
    Melnick, Karin
    Pecastaing, Vincent
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 35 (01) : 81 - 122
  • [5] The Stasheff model of a simply-connected manifold and the string bracket
    Lazarev, A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (02) : 735 - 745
  • [6] An 8-dimensional nonformal, simply connected, symplectic manifold
    Fernandez, Marisa
    Munoz, Vicente
    ANNALS OF MATHEMATICS, 2008, 167 (03) : 1045 - 1054
  • [7] NUMBER OF ROOTS IN A SIMPLY-CONNECTED H-MANIFOLD
    BROWN, RF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A212 - &
  • [8] NUMBER OF ROOTS IN A SIMPLY-CONNECTED H-MANIFOLD
    BROWN, RF
    STERN, RJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 170 (AUG) : 499 - +
  • [9] Maps from a Simply Connected Space to Flag Manifold G/T
    Zhao, Xu An
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (06) : 1131 - 1134
  • [10] A comparison theorem on simply connected complete Riemannian manifolds
    Granados, A
    ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (04) : 1167 - 1176