The structure of uniaxially stretched isotactic polypropylene sheets: Imaging with frequency-modulation atomic force microscopy

被引:4
|
作者
Uchida, Kiminori [1 ]
Mita, Kazuki [1 ]
Matsuoka, Osamu [1 ]
Isaki, Takeharu [1 ]
Kimura, Kenjiro [2 ]
Onishi, Hiroshi [2 ]
机构
[1] Mitsui Chem Inc, Adv Anal Lab, 580-32 Nagaura, Chiba 2990265, Japan
[2] Kobe Univ, Grad Sch Sci, Dept Chem, Nada Ku, Kobe, Hyogo 6578501, Japan
关键词
Frequency-modulation atomic force microscopy; Polypropylene; X-ray scattering; Uniaxial stretching; X-RAY-SCATTERING; CRYSTALS; DEFORMATION; CRYSTALLIZATION; VISUALIZATION; MORPHOLOGY; HYDRATION; BEHAVIOR; LIQUID;
D O I
10.1016/j.polymer.2015.11.033
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Isotactic polypropylene sheets were uniaxially stretched and observed with a frequency-modulation atomic force microscope operated in phenyloctane liquid. Crystalline lamellae were seen in fibrils with their axis parallel to the stretched direction. Individual CH3 side-chains of three-fold helices were identified in the lamellae. Fragmentation of the lamellae was induced by further stretching. The real-space features observed with the microscope were successfully compared with X-ray scattering results obtained in a synchrotron radiation facility. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:349 / 355
页数:7
相关论文
共 50 条
  • [1] Autopilot for frequency-modulation atomic force microscopy
    Kuchuk, Kfir
    Schlesinger, Itai
    Sivan, Uri
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (10):
  • [2] Conservative and dissipative force imaging of switchable rotaxanes with frequency-modulation atomic force microscopy
    Farrell, AA
    Fukuma, T
    Uchihashi, T
    Kay, ER
    Bottari, G
    Leigh, DA
    Yamada, H
    Jarvis, SP
    PHYSICAL REVIEW B, 2005, 72 (12)
  • [3] Nanoscale lithography with frequency-modulation atomic force microscopy
    Hamada, Masayuki
    Eguchi, T.
    Akiyama, K.
    Hasegawa, Y.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (12):
  • [4] Physical interpretation of frequency-modulation atomic force microscopy
    Giessibl, FJ
    Bielefeldt, H
    PHYSICAL REVIEW B, 2000, 61 (15): : 9968 - 9971
  • [5] True atomic resolution in liquid by frequency-modulation atomic force microscopy
    Fukuma, T
    Kobayashi, K
    Matsushige, K
    Yamada, H
    APPLIED PHYSICS LETTERS, 2005, 87 (03)
  • [6] Hydration Structure of a Single DNA Molecule Revealed by Frequency-Modulation Atomic Force Microscopy
    Kuchuk, Kfir
    Sivan, Uri
    NANO LETTERS, 2018, 18 (04) : 2733 - 2737
  • [7] Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy
    Welker, Joachim
    Illek, Esther
    Giessibl, Franz J.
    Beilstein Journal of Nanotechnology, 2012, 3 (01) : 238 - 248
  • [8] Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy
    Welker, Joachim
    Illek, Esther
    Giessibl, Franz J.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2012, 3 : 238 - 248
  • [9] True molecular resolution in liquid by frequency-modulation atomic force microscopy
    Fukuma, T
    Kobayashi, K
    Matsushige, K
    Yamada, H
    APPLIED PHYSICS LETTERS, 2005, 86 (19) : 1 - 3
  • [10] Coupling of conservative and dissipative forces in frequency-modulation atomic force microscopy
    Sader, John E.
    Jarvis, Suzanne P.
    PHYSICAL REVIEW B, 2006, 74 (19)