On the Depth Distribution of Constacyclic Codes over Z4 of Length 2e

被引:0
|
作者
Zhu Shixin [1 ]
Huang Shan [1 ,2 ]
Li Jin [1 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230601, Anhui, Peoples R China
[2] Anhui Vocat Coll Police Officers, Dept Informat Management, Hefei 230031, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Depth spectrum; Depth distribution; Constacyclic codes; P-ARY CODES; CYCLIC CODES; NEGACYCLIC CODES;
D O I
10.1049/cje.2019.03.007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider the depth distribution of constacyclic codes over Z(4) with length even prime power. The depth distribution of negacyclic codes over Z(4) of length 2(e) is completely determined. Furthermore, we determine the depth spectrum of cycilc codes over Z(4) of length 2(e), and the depth distribution of some cyclic codes over Z(4) of length 2(e) is also given.
引用
收藏
页码:462 / 469
页数:8
相关论文
共 50 条
  • [41] A study on structure of codes over Z4
    Karthick, G.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (03) : 567 - 578
  • [42] Negacyclic and cyclic codes over Z4
    Wolfmann, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2527 - 2532
  • [43] ON THE LINEAR CODES OVER THE RING Z4
    Dertli, Abdullah
    Cengellenmis, Yasemin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 809 - 823
  • [44] On double cyclic codes over Z4
    Gao, Jian
    Shi, Minjia
    Wu, Tingting
    Fu, Fang-Wei
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 39 : 233 - 250
  • [45] CANONIZATION OF LINEAR CODES OVER Z4
    Feulner, Thomas
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2011, 5 (02) : 245 - 266
  • [46] Hulls of cyclic codes over Z4
    Jitman, Somphong
    Sangwisut, Ekkasit
    Udomkavanich, Patanee
    DISCRETE MATHEMATICS, 2020, 343 (0I)
  • [47] On the construction of some type II codes over Z4 x Z4
    Nocon, EG
    DESIGNS CODES AND CRYPTOGRAPHY, 2003, 30 (03) : 301 - 323
  • [48] Cyclic and constacyclic codes over the ring Z4[u]/⟨u3 - u2⟩ and their Gray images
    Ozen, Mehmet
    Uzekmek, Fatma Zehra
    Oztas, Elif Segah
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) : 579 - 596
  • [49] Self-dual cyclic codes over Z4 of length 4n
    Cao, Yuan
    Cao, Yonglin
    Fu, Fang-Wei
    Wang, Guidong
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2022, 33 (01) : 21 - 51
  • [50] Generalized cyclotomic numbers and cyclic codes of prime power length over Z4
    Batra, Sudhir
    Jain, Sonal
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (05)