Displaced periodic orbits;
Solar sail;
Restricted three body problem;
D O I:
10.1007/978-90-481-9884-9_17
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We identify displaced periodic orbits in the circular restricted three-body problem, where the third (small) body is a solar sail. In particular, we consider solar sail orbits in the Earth-Sun system which are high above the ecliptic plane. It is shown that periodic orbits about surfaces of artificial equilibria are naturally present at linear order. Using the method of Lindstedt-Poincare, we construct nth order approximations to periodic solutions of the nonlinear equations of motion. In the second part of the paper we generalize to the solar sail elliptical restricted three body problem. A numerical continuation, with the eccentricity, e, as the varying parameter, is used to find periodic orbits above the ecliptic, starting from a known orbit at e = 0 and continuing to the required eccentricity of e = 0.0167. The stability of these periodic orbits is investigated.
机构:
Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing 100094, Peoples R ChinaChinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing 100094, Peoples R China
机构:
Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, MexicoUniv Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
Ortega, Alberto Castro
Falconi, Manuel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, MexicoUniv Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
Falconi, Manuel
Lacomba, Ernesto A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, MexicoUniv Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico