Symmetric Periodic Orbits and Schubart Orbits in The Charged Collinear Three-Body Problem

被引:1
|
作者
Ortega, Alberto Castro [1 ]
Falconi, Manuel [1 ]
Lacomba, Ernesto A. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
关键词
Continuation method; Schubart orbits; Symmetries; 3; BODIES; EQUILIBRIA; EXISTENCE; PROOF;
D O I
10.1007/s12346-014-0112-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using analytic continuation of periodic orbits and symmetries we construct symmetric periodic solutions in the charged collinear three-body problem for the case where the outer particles are sufficiently small and have small charge. The results obtained allows to construct Schubart-like periodic solutions for different values of masses and charges in this setting and for the case of equal masses and charges of the outer bodies we have explicit Schubart periodic solutions.
引用
收藏
页码:181 / 196
页数:16
相关论文
共 50 条
  • [1] Symmetric Periodic Orbits and Schubart Orbits in The Charged Collinear Three-Body Problem
    Alberto Castro Ortega
    Manuel Falconi
    Ernesto A. Lacomba
    [J]. Qualitative Theory of Dynamical Systems, 2014, 13 : 181 - 196
  • [2] A topological existence proof for the Schubart orbits in the collinear three-body problem
    Moeckel, Richard
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 10 (2-3): : 609 - 620
  • [3] Periodic orbits of a collinear restricted three-body problem
    Corbera, M
    Llibre, J
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2003, 86 (02): : 163 - 183
  • [4] Periodic Orbits of a Collinear Restricted Three-Body Problem
    Montserrat Corbera
    Jaume Llibre
    [J]. Celestial Mechanics and Dynamical Astronomy, 2003, 86 : 163 - 183
  • [5] Non-schubart periodic orbits in the rectilinear three-body problem
    Masaya Masayoshi Saito
    Kiyotaka Tanikawa
    [J]. Celestial Mechanics and Dynamical Astronomy, 2010, 107 : 397 - 407
  • [6] Non-schubart periodic orbits in the rectilinear three-body problem
    Saito, Masaya Masayoshi
    Tanikawa, Kiyotaka
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2010, 107 (04): : 397 - 407
  • [7] Symmetric periodic orbits for the collinear charged 3-body problem
    Llibre, Jaume
    Tonon, Durval J.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (02)
  • [8] Schubart Solutions in the Charged Collinear Three-Body Problem
    Alberto Castro Ortega
    Manuel Falconi
    [J]. Journal of Dynamics and Differential Equations, 2016, 28 : 519 - 532
  • [9] Schubart Solutions in the Charged Collinear Three-Body Problem
    Castro Ortega, Alberto
    Falconi, Manuel
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2016, 28 (02) : 519 - 532
  • [10] Symmetric horseshoe periodic orbits in the general planar three-body problem
    Bengochea, Abimael
    Falconi, Manuel
    Perez-Chavela, Ernesto
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2011, 333 (02) : 399 - 408