Constrained instruments and their application to Mendelian randomization with pleiotropy

被引:12
|
作者
Jiang, Lai [1 ,2 ,3 ]
Oualkacha, Karim [4 ]
Didelez, Vanessa [5 ,6 ]
Ciampi, Antonio [1 ,2 ,3 ]
Rosa-Neto, Pedro [7 ,8 ]
Benedet, Andrea L. [8 ]
Mathotaarachchi, Sulantha [8 ]
Richards, John Brent [9 ]
Greenwood, Celia M. T. [1 ,2 ,3 ]
机构
[1] Jewish Gen Hosp, Lady Davis Inst Med Res, Montreal, PQ H3T 1E2, Canada
[2] McGill Univ, Dept Epidemiol Biostat & Occupat Hlth, Montreal, PQ, Canada
[3] McGill Univ, Gerald Bronfman Dept Oncol, Montreal, PQ, Canada
[4] Univ Quebec Montreal, Dept Math, Montreal, PQ, Canada
[5] Univ Bremen, Leibinz Inst Prevent Res & Epidemiol, BIPS, Bremen, Germany
[6] Univ Bremen, Leibinz Inst Prevent Res & Epidemiol, Dept Math, Bremen, Germany
[7] McGill Univ, Dept Neurol & Neurosurg, Montreal, PQ, Canada
[8] McGill Univ, Douglas Hosp, Res Ctr Studies Aging, Translat Neuroimaging Lab, Montreal, PQ, Canada
[9] McGill Univ, Dept Med, Montreal, PQ, Canada
关键词
instrumental variables; Mendelian randomization; pleiotropy; smoothed algorithm; CEREBROSPINAL-FLUID; ALZHEIMERS-DISEASE; EDUCATIONAL-ATTAINMENT; WEAK INSTRUMENTS; VARIABLES; TAU; BIAS; MULTICOLLINEARITY; REGRESSION; MODELS;
D O I
10.1002/gepi.22184
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In Mendelian randomization (MR), inference about causal relationship between a phenotype of interest and a response or disease outcome can be obtained by constructing instrumental variables from genetic variants. However, MR inference requires three assumptions, one of which is that the genetic variants only influence the outcome through phenotype of interest. Pleiotropy, that is, the situation in which some genetic variants affect more than one phenotype, can invalidate these genetic variants for use as instrumental variables; thus a naive analysis will give biased estimates of the causal relation. Here, we present new methods (constrained instrumental variable [CIV] methods) to construct valid instrumental variables and perform adjusted causal effect estimation when pleiotropy exists and when the pleiotropic phenotypes are available. We demonstrate that a smoothed version of CIV performs approximate selection of genetic variants that are valid instruments, and provides unbiased estimates of the causal effects. We provide details on a number of existing methods, together with a comparison of their performance in a large series of simulations. CIV performs robustly across different pleiotropic violations of the MR assumptions. We also analyzed the data from the Alzheimer's disease (AD) neuroimaging initiative (ADNI; Mueller et al., 2005. Alzheimer's Dementia, 11(1), 55-66) to disentangle causal relationships of several biomarkers with AD progression.
引用
收藏
页码:373 / 401
页数:29
相关论文
共 50 条
  • [21] A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization
    Bowden, Jack
    Del Greco, Fabiola M.
    Minelli, Cosetta
    Smith, George Davey
    Sheehan, Nuala
    Thompson, John
    [J]. STATISTICS IN MEDICINE, 2017, 36 (11) : 1783 - 1802
  • [22] MR-Link: Mendelian Randomization Under Linkage Disequilibrium and Unobserved Pleiotropy
    van der Graaf, Adriaan
    Claringbould, Annique
    Westra, Harm-Jan
    Li, Yang
    Wijmenga, Cisca
    Sanna, Serena
    [J]. HUMAN HEREDITY, 2017, 83 (05) : 233 - 233
  • [23] Mendelian Randomization: Application to Cardiovascular Disease
    Nicholas J. Timpson
    Kaitlin H. Wade
    George Davey Smith
    [J]. Current Hypertension Reports, 2012, 14 : 29 - 37
  • [24] Mendelian Randomization: Application to Cardiovascular Disease
    Timpson, Nicholas J.
    Wade, Kaitlin H.
    Smith, George Davey
    [J]. CURRENT HYPERTENSION REPORTS, 2012, 14 (01) : 29 - 37
  • [25] Robust Mendelian randomization in the presence of residual population stratification, batch effects and horizontal pleiotropy
    Carlos Cinelli
    Nathan LaPierre
    Brian L. Hill
    Sriram Sankararaman
    Eleazar Eskin
    [J]. Nature Communications, 13
  • [26] Avoiding bias from weak instruments in Mendelian randomization studies
    Burgess, Stephen
    Thompson, Simon G.
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2011, 40 (03) : 755 - 764
  • [27] Using instruments for selection to adjust for selection bias in Mendelian randomization
    Gkatzionis, Apostolos
    Tilling, Kate
    [J]. HUMAN HEREDITY, 2022, VOL. (SUPPL 1) : 23 - 23
  • [28] Using instruments for selection to adjust for selection bias in Mendelian randomization
    Gkatzionis, Apostolos
    Tchetgen, Eric J. Tchetgen
    Heron, Jon
    Northstone, Kate
    Tilling, Kate
    [J]. STATISTICS IN MEDICINE, 2024,
  • [29] 'Mendelian randomization' equals instrumental variable analysis with genetic instruments
    Wehby, George L.
    Ohsfeldt, Robert L.
    Murray, Jeffrey C.
    [J]. STATISTICS IN MEDICINE, 2008, 27 (15) : 2745 - 2749
  • [30] Using Genetic Instruments to Estimate Interactions in Mendelian Randomization Studies
    North, Teri-Louise
    Davies, Neil M.
    Harrison, Sean
    Carter, Alice R.
    Hemani, Gibran
    Sanderson, Eleanor
    Tilling, Kate
    Howe, Laura D.
    [J]. EPIDEMIOLOGY, 2019, 30 (06) : E33 - E35