Berge's maximum theorem for noncompact image sets

被引:19
|
作者
Feinberg, Eugene A. [1 ]
Kasyanov, Pavlo O. [2 ]
Voorneveld, Mark [3 ]
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] Natl Tech Univ Ukraine, Inst Appl Syst Anal, Kyiv Polytech Inst, UA-03056 Kiev, Ukraine
[3] Stockholm Sch Econ, Dept Econ, S-11383 Stockholm, Sweden
基金
美国国家科学基金会;
关键词
Berge's maximum theorem; Set-valued mapping; Continuity; MARKOV DECISION-PROCESSES;
D O I
10.1016/j.jmaa.2013.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note generalizes Berge's maximum theorem to noncompact image sets. It also clarifies the results from Feinberg, Kasyanov and Zadoianchuk (2013) [7] on the extension to noncompact image sets of another Berge's theorem, that states semi-continuity of value functions. Here we explain that the notion of a K-inf-compact function introduced there is applicable to metrizable topological spaces and to more general compactly generated topological spaces. For Hausdorff topological spaces we introduce the notion of a KN-inf-compact function (N stands for "nets" in K-inf-compactness), which coincides with K-inf-compactness for compactly generated and, in particular, for metrizable topological spaces. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1040 / 1046
页数:7
相关论文
共 50 条
  • [31] A fixed point theorem on noncompact manifolds
    Hochs, Peter
    Wang, Hang
    ANNALS OF K-THEORY, 2018, 3 (02) : 235 - 286
  • [32] The noncompact Banach-Stone theorem
    Araujo, Jesus
    JOURNAL OF OPERATOR THEORY, 2006, 55 (02) : 285 - 294
  • [33] THEOREM ON CONVEX-SETS RELATED TO ABSTRACT PONTRIAGIN MAXIMUM PRINCIPLE
    WOJTASZCZYK, P
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1973, 21 (10): : 931 - 932
  • [34] CONVERGENCE OF ISHIKAWA ITERATIONS ON NONCOMPACT SETS
    Mutangadura, Simba A.
    QUAESTIONES MATHEMATICAE, 2014, 37 (02) : 191 - 198
  • [35] Topological entropy dimension for noncompact sets
    Ma, Dongkui
    Kuang, Rui
    Li, Bing
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2012, 27 (03): : 303 - 316
  • [36] On noncompact minimal sets of the geodesic flow
    Dal'bo, F
    Starkov, AN
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2002, 8 (01) : 47 - 64
  • [37] ORDINARY AND ASYMPTOTIC STABILITY OF NONCOMPACT SETS
    HAJEK, O
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 11 (01) : 49 - &
  • [38] SEMIDEFINITE REPRESENTATIONS OF NONCOMPACT CONVEX SETS
    Guo, Feng
    Wang, Chu
    Zhi, Lihong
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (01) : 377 - 395
  • [39] On Noncompact Minimal Sets of the Geodesic Flow
    F. Dal'Bo
    A. N. Starkov
    Journal of Dynamical and Control Systems, 2002, 8 : 47 - 64
  • [40] MAXIMUM-PRINCIPLES FOR MINIMAL-SURFACES IN R(3) HAVING NONCOMPACT BOUNDARY AND A UNIQUENESS THEOREM FOR THE HELICOID
    RIPOLL, J
    TOMI, F
    MANUSCRIPTA MATHEMATICA, 1995, 87 (04) : 417 - 434