Berge's maximum theorem for noncompact image sets

被引:19
|
作者
Feinberg, Eugene A. [1 ]
Kasyanov, Pavlo O. [2 ]
Voorneveld, Mark [3 ]
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] Natl Tech Univ Ukraine, Inst Appl Syst Anal, Kyiv Polytech Inst, UA-03056 Kiev, Ukraine
[3] Stockholm Sch Econ, Dept Econ, S-11383 Stockholm, Sweden
基金
美国国家科学基金会;
关键词
Berge's maximum theorem; Set-valued mapping; Continuity; MARKOV DECISION-PROCESSES;
D O I
10.1016/j.jmaa.2013.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note generalizes Berge's maximum theorem to noncompact image sets. It also clarifies the results from Feinberg, Kasyanov and Zadoianchuk (2013) [7] on the extension to noncompact image sets of another Berge's theorem, that states semi-continuity of value functions. Here we explain that the notion of a K-inf-compact function introduced there is applicable to metrizable topological spaces and to more general compactly generated topological spaces. For Hausdorff topological spaces we introduce the notion of a KN-inf-compact function (N stands for "nets" in K-inf-compactness), which coincides with K-inf-compactness for compactly generated and, in particular, for metrizable topological spaces. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1040 / 1046
页数:7
相关论文
共 50 条
  • [21] An Extension of the Win Theorem: Counting the Number of Maximum Independent Sets
    Wanpeng Lei
    Liming Xiong
    Junfeng Du
    Jun Yin
    Chinese Annals of Mathematics, Series B, 2019, 40 : 411 - 428
  • [22] An Extension of the Win Theorem: Counting the Number of Maximum Independent Sets
    Lei, Wanpeng
    Xiong, Liming
    Du, Junfeng
    Yin, Jun
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2019, 40 (03) : 411 - 428
  • [23] An Extension of the Win Theorem: Counting the Number of Maximum Independent Sets
    Wanpeng LEI
    Liming XIONG
    Junfeng DU
    Jun YIN
    Chinese Annals of Mathematics,Series B, 2019, (03) : 411 - 428
  • [24] AN UNBOUNDED BERGE'S MINIMUM THEOREM WITH APPLICATIONS TO DISCOUNTED MARKOV DECISION PROCESSES
    Montes-de-Oca, Raul
    Lemus-Rodriguez, Enrique
    KYBERNETIKA, 2012, 48 (02) : 268 - 286
  • [25] The heat kernel and Hardy’s theorem on symmetric spaces of noncompact type
    E. K. Narayanan
    S. K. Ray
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2002, 112 : 321 - 330
  • [26] The heat kernel and Hardy's theorem on symmetric spaces of noncompact type
    Narayanan, EK
    Ray, SK
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (02): : 321 - 330
  • [27] Higman's theorem on discrete sets
    Burderi, Fabio
    Castiglione, Giuseppa
    Restivo, Antonio
    FUNDAMENTA INFORMATICAE, 2006, 74 (04) : 435 - 446
  • [28] On the fundamental theorem of compact and noncompact surfaces
    Konya, Eszter
    ANNALES MATHEMATICAE ET INFORMATICAE, 2005, 32 : 211 - 224
  • [29] NONCOMPACT H-COBORDISM THEOREM
    MACLEAN, DW
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1973, 23 (03) : 392 - 396