Comparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering

被引:19
|
作者
Danisovic, L'ubos [1 ]
Bohac, Martin [2 ]
Zamborsky, Radoslav [3 ,4 ,5 ]
Oravcova, Lenka [6 ]
Provaznikova, Zuzana [7 ,8 ]
Csoeboenyeiova, Maria [6 ]
Varga, Ivan [6 ]
机构
[1] Comenius Univ, Fac Med, Inst Med Biol Genet & Clin Genet, Sasinkova 4, Bratislava 81108, Slovakia
[2] Comenius Univ, Fac Med, Dept Plast Reconstruct & Aesthet Surg, Bratislava 81108, Slovakia
[3] Comenius Univ, Fac Med, Dept Orthopaed, Bratislava 81108, Slovakia
[4] Childrens Fac Hosp, Bratislava, Slovakia
[5] Comenius Univ, Fac Med, Inst Anat, Bratislava 81108, Slovakia
[6] Comenius Univ, Fac Med, Inst Histol & Embryol, Bratislava 81108, Slovakia
[7] Slovak Med Univ, Fac Med, Dept Obstet & Gynaecol, Bratislava, Slovakia
[8] Univ Hosp, Bratislava, Slovakia
关键词
Mesenchymal stromal cells; Bone marrow; Adipose tissue; Umbilical cord; Cartilage tissue engineering; STEM-CELLS; CHONDROGENIC DIFFERENTIATION; HUMAN ADIPOSE; HYDROSTATIC-PRESSURE; UMBILICAL-CORD; CHONDROCYTES; EXPANSION; THERAPY; CD34;
D O I
10.4149/gpb_2015044
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The main goal of this study was a comparison of biological properties of mesenchymal stromal cells (MSCs) obtained from bone marrow, adipose tissue and umbilical cord with respect to articular cartilage regeneration. MSCs were isolated and expanded in vitro up to the third passage. The kinetics of proliferation was analyzed by cell analyzer CEDEX XS and expression of selected markers was assessed by flow cytometry. The morphology was analyzed by inverted microscope and TEM. Pellet culture system and chondrogenic medium containing TGF-beta 1 was used to induce chondrogenic differentiation. Chondrogenesis was analyzed by real-time PCR; the expression of collagen type I and type II was compared. MSCs from all sources showed similar kinetics of proliferation and shared expression of CD73, CD90 and CD105; and were negative for CD14, CD20, CD34 and CD45. Observation under inverted microscope and TEM showed similar morphology of all analyzed MSCs. Cells from all sources underwent chondrogenic differentiation - they expressed collagen type II and acid mucopolysaccharides typical for hyaline cartilage. On the basis of obtained results it should be emphasized that MSCs from bone marrow, adipose tissue and umbilical cord share biological properties. They possess the chondrogenic potential and may be utilized in cartilage tissue engineering.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 50 条
  • [41] Repair and tissue engineering techniques for articular cartilage
    Eleftherios A. Makris
    Andreas H. Gomoll
    Konstantinos N. Malizos
    Jerry C. Hu
    Kyriacos A. Athanasiou
    Nature Reviews Rheumatology, 2015, 11 : 21 - 34
  • [42] Microbial biopolymers in articular cartilage tissue engineering
    Bingul, Nur Deniz
    Oz, Yunus Emre
    Sendemir, Aylin
    Hames, Elif Esin
    JOURNAL OF POLYMER RESEARCH, 2022, 29 (08)
  • [43] Microbial biopolymers in articular cartilage tissue engineering
    Nur Deniz BİNGÜL
    Yunus Emre ÖZ
    Aylin ŞENDEMİR
    Elif Esin HAMEŞ
    Journal of Polymer Research, 2022, 29
  • [44] Functionalized Hydrogels for Articular Cartilage Tissue Engineering
    Zhou, Liangbin
    Guo, Peng
    D'Este, Matteo
    Tong, Wenxue
    Xu, Jiankun
    Yao, Hao
    Stoddart, Martin J.
    van Osch, Gerjo J. V. M.
    Ho, Kevin Ki-Wai
    Li, Zhen
    Qin, Ling
    ENGINEERING, 2022, 13 : 71 - 90
  • [45] Advancements in tissue engineering for articular cartilage regeneration
    Chen, Maohua
    Jiang, Zhiyuan
    Zou, Xiuyuan
    You, Xiaobo
    Cai, Zhen
    Huang, Jinming
    HELIYON, 2024, 10 (03)
  • [46] Articular Chondroprogenitors as tools for cartilage tissue engineering
    Bishop, Joanna Charlotte
    Khan, Ilyas
    Williams, Rebecca
    Archer, Charles
    FASEB JOURNAL, 2009, 23
  • [47] Tissue Engineering of Articular Cartilage with Biomimetic Zones
    Klein, Travis J.
    Malda, Jos
    Sah, Robert L.
    Hutmacher, Dietmar W.
    TISSUE ENGINEERING PART B-REVIEWS, 2009, 15 (02) : 143 - 157
  • [48] Review: tissue engineering for regeneration of articular cartilage
    Temenoff, JS
    Mikos, AG
    BIOMATERIALS, 2000, 21 (05) : 431 - 440
  • [49] Repair and tissue engineering techniques for articular cartilage
    Makris, Eleftherios A.
    Gomoll, Andreas H.
    Malizos, Konstantinos N.
    Hu, Jerry C.
    Athanasiou, Kyriacos A.
    NATURE REVIEWS RHEUMATOLOGY, 2015, 11 (01) : 21 - 34
  • [50] Mesenchymal Stromal/Stem Cells in Regenerative Medicine and Tissue Engineering
    Fitzsimmons, Ross E. B.
    Mazurek, Matthew S.
    Soos, Agnes
    Simmons, Craig A.
    STEM CELLS INTERNATIONAL, 2018, 2018