Comparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering

被引:19
|
作者
Danisovic, L'ubos [1 ]
Bohac, Martin [2 ]
Zamborsky, Radoslav [3 ,4 ,5 ]
Oravcova, Lenka [6 ]
Provaznikova, Zuzana [7 ,8 ]
Csoeboenyeiova, Maria [6 ]
Varga, Ivan [6 ]
机构
[1] Comenius Univ, Fac Med, Inst Med Biol Genet & Clin Genet, Sasinkova 4, Bratislava 81108, Slovakia
[2] Comenius Univ, Fac Med, Dept Plast Reconstruct & Aesthet Surg, Bratislava 81108, Slovakia
[3] Comenius Univ, Fac Med, Dept Orthopaed, Bratislava 81108, Slovakia
[4] Childrens Fac Hosp, Bratislava, Slovakia
[5] Comenius Univ, Fac Med, Inst Anat, Bratislava 81108, Slovakia
[6] Comenius Univ, Fac Med, Inst Histol & Embryol, Bratislava 81108, Slovakia
[7] Slovak Med Univ, Fac Med, Dept Obstet & Gynaecol, Bratislava, Slovakia
[8] Univ Hosp, Bratislava, Slovakia
关键词
Mesenchymal stromal cells; Bone marrow; Adipose tissue; Umbilical cord; Cartilage tissue engineering; STEM-CELLS; CHONDROGENIC DIFFERENTIATION; HUMAN ADIPOSE; HYDROSTATIC-PRESSURE; UMBILICAL-CORD; CHONDROCYTES; EXPANSION; THERAPY; CD34;
D O I
10.4149/gpb_2015044
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The main goal of this study was a comparison of biological properties of mesenchymal stromal cells (MSCs) obtained from bone marrow, adipose tissue and umbilical cord with respect to articular cartilage regeneration. MSCs were isolated and expanded in vitro up to the third passage. The kinetics of proliferation was analyzed by cell analyzer CEDEX XS and expression of selected markers was assessed by flow cytometry. The morphology was analyzed by inverted microscope and TEM. Pellet culture system and chondrogenic medium containing TGF-beta 1 was used to induce chondrogenic differentiation. Chondrogenesis was analyzed by real-time PCR; the expression of collagen type I and type II was compared. MSCs from all sources showed similar kinetics of proliferation and shared expression of CD73, CD90 and CD105; and were negative for CD14, CD20, CD34 and CD45. Observation under inverted microscope and TEM showed similar morphology of all analyzed MSCs. Cells from all sources underwent chondrogenic differentiation - they expressed collagen type II and acid mucopolysaccharides typical for hyaline cartilage. On the basis of obtained results it should be emphasized that MSCs from bone marrow, adipose tissue and umbilical cord share biological properties. They possess the chondrogenic potential and may be utilized in cartilage tissue engineering.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 50 条
  • [31] Transcriptional comparisons between equine articular repair tissue, neonatal cartilage, cultured chondrocytes and mesenchymal stromal cells
    Mienaltowski, Michael J.
    Huang, Liping
    Bathke, Ame C.
    Stromberg, Arnold J.
    MacLeod, James N.
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2010, 9 (03) : 238 - 250
  • [32] Co-culture of infrapatellar fat pad-derived mesenchymal stromal cells and articular chondrocytes in plasma clot for cartilage tissue engineering
    Arora, Aditya
    Sriram, M.
    Kothari, Anjaney
    Katti, Dhirendra S.
    CYTOTHERAPY, 2017, 19 (07) : 881 - 894
  • [33] Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: An approach for their use in neural regeneration therapies
    Urrutia, Daniela N.
    Caviedes, Pablo
    Mardones, Rodrigo
    Minguell, Jose Prime J.
    Maria Vega-Letter, Ana
    Jofre, Claudio M.
    PLOS ONE, 2019, 14 (03):
  • [34] Biomaterials for articular cartilage tissue engineering: Learning from biology
    Armiento, A. R.
    Stoddart, M. J.
    Alini, M.
    Eglin, D.
    ACTA BIOMATERIALIA, 2018, 65 : 1 - 20
  • [35] Tissue engineering of stratified articular cartilage from chondrocyte subpopulations
    Klein, TJ
    Schumacher, BL
    Schmidt, TA
    Li, KW
    Voegtline, MS
    Masuda, K
    Thonar, EJMA
    Sah, RL
    OSTEOARTHRITIS AND CARTILAGE, 2003, 11 (08) : 595 - 602
  • [36] Comparative analysis of mesenchymal stromal cells derived from rabbit bone marrow and Wharton's jelly for adipose tissue engineering
    Li, Linli
    Dong, Jian
    He, Yiqun
    Mao, Wei
    Tang, Han
    Dong, Youhai
    Lyu, Feizhou
    CONNECTIVE TISSUE RESEARCH, 2020, 61 (06) : 537 - 545
  • [37] Original approach for cartilage tissue engineering with mesenchymal stem cells
    Tritz-Schiavi, J.
    Charif, N.
    Henrionnet, C.
    de Isla, N.
    Bensoussan, D.
    Magdalou, J.
    Benkirane-Jessel, N.
    Stoltz, J. F.
    Huselstein, C.
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2010, 20 (3-4) : 167 - 174
  • [38] Mesenchymal stem cells as a potential pool for cartilage tissue engineering
    Csaki, C.
    Schneider, P. R. A.
    Shakibaei, M.
    ANNALS OF ANATOMY-ANATOMISCHER ANZEIGER, 2008, 190 (05) : 395 - 412
  • [39] Tissue engineering with mesenchymal stem cells to reconstruct cartilage and bone
    Schaefer, DJ
    Klemt, C
    Zhang, XH
    Stark, GB
    CHIRURG, 2000, 71 (09): : 1001 - 1008
  • [40] Tribology for Functional Tissue Engineering of Articular Cartilage
    Sawae, Yoshinori
    JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS, 2008, 53 (12) : 799 - 804