Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species

被引:88
|
作者
Conners, Shannon B.
Mongodin, Emmanuel F.
Johnson, Matthew R.
Montero, Clemente I.
Nelson, Karen E.
Kelly, Robert M.
机构
[1] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[2] Inst Genom Res, Rockville, MD USA
关键词
Thermotoga; hyperthermophiles; functional genomics;
D O I
10.1111/j.1574-6976.2006.00039.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
High-throughput sequencing of microbial genomes has allowed the application of functional genomics methods to species lacking well-developed genetic systems. For the model hyperthermophile Thermotoga maritima, microarrays have been used in comparative genomic hybridization studies to investigate diversity among Thermotoga species. Transcriptional data have assisted in prediction of pathways for carbohydrate utilization, iron-sulfur cluster synthesis and repair, expolysaccharide formation, and quorum sensing. Structural genomics efforts aimed at the T. maritima proteome have yielded hundreds of high-resolution datasets and predicted functions for uncharacterized proteins. The information gained from genomics studies will be particularly useful for developing new biotechnology applications for T. maritima enzymes.
引用
收藏
页码:872 / 905
页数:34
相关论文
共 50 条
  • [31] Characterization of a thermostable carboxylesterase from the hyperthermophilic bacterium Thermotoga maritima
    Kakugawa, Satoshi
    Fushinobu, Shinya
    Wakagi, Takayoshi
    Shoun, Hirofumi
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 74 (03) : 585 - 591
  • [32] High rate continuous biohydrogen production by hyperthermophilic Thermotoga neapolitana
    Dreschke, Gilbert
    Papirio, Stefano
    Scala, Alessio
    Lens, Piet N. L.
    Esposito, Giovanni
    [J]. BIORESOURCE TECHNOLOGY, 2019, 293
  • [33] The multidomain xylanase A of the hyperthermophilic bacterium Thermotoga neapolitana is extremely thermoresistant
    Zverlov, V
    Piotukh, K
    Dakhova, O
    Velikodvorskaya, G
    Borriss, R
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1996, 45 (1-2) : 245 - 247
  • [34] Xylanase attachment to the cell wall of the hyperthermophilic bacterium Thermotoga maritima
    Liebl, Wolfgang
    Winterhalter, Christoph
    Baumeister, Wolfgang
    Armbrech, Martin
    Valdez, Michael
    [J]. JOURNAL OF BACTERIOLOGY, 2008, 190 (04) : 1350 - 1358
  • [35] Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology
    G. M. Rossolini
    S. Schippa
    M. L. Riccio
    F. Berlutti
    L. E. Macaskie
    M. C. Thaller
    [J]. Cellular and Molecular Life Sciences CMLS, 1998, 54 : 833 - 850
  • [36] Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology
    Rossolini, GM
    Schippa, S
    Riccio, ML
    Berlutti, F
    Macaskie, LE
    Thaller, MC
    [J]. CELLULAR AND MOLECULAR LIFE SCIENCES, 1998, 54 (08) : 833 - 850
  • [37] Teaching of biotechnology in the biochemistry course
    Serralheiro, MLMDM
    [J]. ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2002, 5 (03): : 212 - 215
  • [38] A gyrB-like gene from the hyperthermophilic bacterion Thermotoga maritima
    Guipaud, O
    Labedan, B
    Forterre, P
    [J]. GENE, 1996, 174 (01) : 121 - 128
  • [39] Isolation and analysis of genes for amylolytic enzymes of the hyperthermophilic bacterium Thermotoga maritima
    Bibel, M
    Brettl, C
    Gosslar, U
    Kriegshäuser, G
    Liebl, W
    [J]. FEMS MICROBIOLOGY LETTERS, 1998, 158 (01) : 9 - 15
  • [40] Frontiers in process biochemistry and biotechnology
    Zhou, Wen-Wen
    Chevalot, Isabelle
    [J]. PROCESS BIOCHEMISTRY, 2023, 130 : 566 - 568