High rate continuous biohydrogen production by hyperthermophilic Thermotoga neapolitana

被引:6
|
作者
Dreschke, Gilbert [1 ]
Papirio, Stefano [2 ]
Scala, Alessio [1 ]
Lens, Piet N. L. [3 ]
Esposito, Giovanni [2 ]
机构
[1] Univ Cassino & Southern Lazio, Dept Civil & Mech Engn, Via Di Biasio 43, I-03043 Cassino, FR, Italy
[2] Univ Napoli Federico II, Dept Civil Architectural & Environm Engn, Via Claudio 21, I-80125 Naples, Italy
[3] UNESCO, IHE Inst Water Educ, Westvest 7, NL-2611 AX Delft, Netherlands
基金
欧盟地平线“2020”;
关键词
Thermotoga neapolitana; Hydrogen; Continuous-flow dark fermentation; Acetic acid; Hydraulic retention time; Gas recirculation; FERMENTATIVE HYDROGEN-PRODUCTION; CLOSTRIDIUM-TYROBUTYRICUM; DARK FERMENTATION; MASS-TRANSFER; FOOD WASTE; BIOREACTOR; STRATEGIES; REACTORS; GLUCOSE; BIOMASS;
D O I
10.1016/j.biortech.2019.122033
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This study focused on continuous-flow hydrogen production by Thermotoga neapolitana at a hydraulic retention time (HRT) decreasing from 24 to 5 h. At each HRT reduction, the hydrogen yield (HY) immediately dropped, but recovered during prolonged cultivation at constant HRT. The final HY in each operating period decreased from 3.4 ( +/- 0.1) to 2.0 ( +/- 0.0) mol H-2/mol glucose when reducing the HRT from 24 to 7h. Simultaneously, the hydrogen production rate (HPR) and the liquid phase hydrogen concentration (H-2aq) increased from 82 ( +/- 1) to 192 ( +/- 4) mL/L/h and from 9.1 ( +/- 0.3) to 15.6 ( +/- 0.7) mL/L, respectively. Additionally, the effluent glucose concentration increased from 2.1 ( +/- 0.1) to above 10 mM. Recirculating H-2-rich biogas prevented the supersaturation of H-2aq reaching a value of 9.3 ( +/- 0.7) mL/L, resulting in complete glucose consumption and the highest HPR of 277 mL/L/h at an HRT of 5 h.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Effect of feed glucose and acetic acid on continuous biohydrogen production by Thermotoga neapolitana
    Dreschke, Gilbert
    Papirio, Stefano
    Sisinni, Desiree M. G.
    Lens, Piet N. L.
    Esposito, Giovanni
    [J]. BIORESOURCE TECHNOLOGY, 2019, 273 : 416 - 424
  • [2] Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation
    Nguyen, Tam Anh D.
    Kim, Jun Pyo
    Kim, Mi Sun
    Oh, You Kwan
    Sim, Sang Jun
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (05) : 1483 - 1488
  • [3] High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana
    Ngo, Tien Anh
    Kim, Mi-Sun
    Sim, Sang Jun
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (10) : 5836 - 5842
  • [4] Enhancement of hydrogen production rate by high biomass concentrations of Thermotoga neapolitana
    Dreschke, Gilbert
    d'Ippolito, Giuliana
    Panico, Antonio
    Lens, Piet N. L.
    Esposito, Giovanni
    Fontana, Angelo
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (29) : 13072 - 13080
  • [5] Hydrogen production by the hyperthermophilic eubacterium, Thermotoga neapolitana, using cellulose pretreated by ionic liquid
    Nguyen, Tam-Anh D.
    Han, Se Jong
    Kim, Jun Pyo
    Kim, Mi Sun
    Oh, You Kwan
    Sim, Sang Jun
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (19) : 5161 - 5168
  • [6] The glucose transport system of the hyperthermophilic anaerobic bacterium Thermotoga neapolitana
    Galperin, MY
    Noll, KM
    Romano, AH
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (08) : 2915 - 2918
  • [7] The multidomain xylanase A of the hyperthermophilic bacterium Thermotoga neapolitana is extremely thermoresistant
    Zverlov, V
    Piotukh, K
    Dakhova, O
    Velikodvorskaya, G
    Borriss, R
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1996, 45 (1-2) : 245 - 247
  • [8] Catabolite repression in the hyperthermophilic bacterium Thermotoga neapolitana is independent of cAMP
    Vargas, M
    Noll, KM
    [J]. MICROBIOLOGY-UK, 1996, 142 : 139 - 144
  • [9] Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition
    Nguyen, Tam-Anh D.
    Han, Se Jong
    Kim, Jun Pyo
    Kim, Mi Sun
    Sim, Sang Jun
    [J]. BIORESOURCE TECHNOLOGY, 2010, 101 : S38 - S41
  • [10] Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana
    Mars, Astrid E.
    Veuskens, Teun
    Budde, Miriam A. W.
    van Doeveren, Patrick F. N. M.
    Lips, Steef J.
    Bakker, Robert R.
    de Vrije, Truus
    Claassen, Pieternel A. M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (15) : 7730 - 7737